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ABSTRACT 
 
This paper presents our work on a demonstration platform 
for a software defined radio proof-of-concept. The aim of 
the demonstrator is to show seamless switching between 
different functions of an IEEE 802.11a [1] WLAN OFDM 
system on an adaptive execution environment. The 
mechanisms and interfaces for dynamic, reliable and secure 
Software Defined Radio (SDR) equipment reconfiguration 
are investigated.  
 The adaptive execution environment concept is 
evaluated on the Real-Time Research Platform (RTRP). A 
Functional Description Language (FDL) based on XML is 
used to describe functional configurations for 
reconfigurable equipment. The FDL XML description is 
interpreted by the Configuration Control Module (CCM) 
using Signal Processing Modules (SPM) to create a binary 
configuration file for the target platform. A hardware 
abstraction layer (HAL) for uniform access to the 
heterogeneous signal processing hardware is defined.  
Finally a WLAN OFDM system is implemented on the 
platform and used to demonstrate the ideas discussed. 
 

1. INTRODUCTION 
 
The modern mobile phone works in a heterogeneous radio 
environment with operators potentially supplying a number 
of different access technologies. Depending on location and 
required service the user or operator may select a different 
technology to minimise cost or optimise performance e.g.  
when the user is at home or in the office the local WiFi 
connection is probably the cheapest option for making a 
connection but when travelling the only option possible 
maybe a cellular connection. Currently this type of   
operation is supported by phones that are capable of 
supporting multiple Radio Access Technologies or 
waveforms (e.g. GSM, WCDMA, IEEE802.11abg) as well 
as packet based services such as VOIP. If we project this 
into the future we can see that, with the gradual push for 
spectrum de-regulation [2], operators will be free to select 
their own access technology. This is attractive to the 
operator because it allows them to differentiate themselves 
from competitors and rapidly track market requirements. 
However, it will mean that the number of modes that need 

to be supported by a multi-mode handset will become very 
large and the cost and time to develop these multi-mode 
chips will be prohibitively expensive and slow. The solution 
we have been investigating in E2R phase 1 and phase 2 is a 
Software Defined Radio (SDR) that is capable of being 
dynamically reconfigured while in the field. A basic 
requirement for any SDR terminal is the ability to be 
reconfigurable while still maintaining low power 
consumption and minimal use of silicon. This is a very big 
challenge to the silicon manufacturer especially when the 
complexities of future systems are continuing to increase.  
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Figure 1: Reconfiguration scenario 
 
 One of the areas E2R has focused on is the logical 
framework that will allow the remote and reliable 
reconfiguration of equipment. This has included the 
definition of a language called Functional Description 
Language (FDL) to communicate across the network the 
requirement for a new a configuration. The FDL is platform 
independent and is interpreted by the equipment, via the 

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved



Configuration Control Module (CCM), to create a unique 
configuration for that specific hardware platform. To create 
this configuration the CCM may request new object code 
for reconfigurable logic or DSPs from a manufacturer’s 
database. This is shown graphically in Figure 1. In this 
paper we describe the work being done within E2R phase 2 
on a proof of concept which aims to demonstrate how these 
ideas can be implemented on an actual platform. 

 
2. OVERVIEW 

 
The HW/SW block diagram for the SDR Proof-of-Concept 
demonstration platform is shown in Figure 2.  

The Configuration Control Module (CCM) is 
responsible for the reconfiguration of the radio device. It 
interacts with a higher-level entity (known as the 
Configuration Management Module CMM and not shown) 
which has the responsibility for deciding what Radio Access 
Technologies (RAT) should be operational at any time. 
When a change in configuration is required the CMM 
communicates with the CCM to request new configurations 
and to exchange any relevant configuration data. 

Thereafter a sub-module of the CCM, known as the 
Primary Configuration Controller (PCC) interprets the 
configuration request and the configuration data, to decide 
how best to implement the RAT using the available 
hardware, ensuring that all relevant constraints are met. 
Finally the PCC installs the chosen software modules on the 
signal-processing hardware and initiates the execution of 
the new RAT. The required implementation-independent 
functionality of each RAT, including its real-time 
constraints, is communicated to the PCC by a Functional 
Description Language (FDL) document. 

The Real-time Research Platform [3] (RTRP) contains 
a set of interconnected hardware components, which are a 
heterogeneous mix of different processing elements, e.g. 
GPPs and DSPs, and FPGAs. These provide the 
mechanisms required for dynamic, reliable and secure 
change of equipment operation, and offer a consistent 
interface to the equipment reconfiguration manager in order 
to apply the needed reconfiguration actions.  

A RTRP Hardware Abstraction Layer (RTRP_HAL) 
has been defined. The RTRP_HAL is a generic interface 
that allows the client to install tasks, pipes and links in a 
standard manner. In essence the RTRP_HAL is analogous 
to an operating system that has been extended to encompass 
multiple operating systems and a single system-wide 
communication system that manages the inter-processor 
links.  

 

 
 

Figure 2: Block diagram of the Software Defined 
Radio Proof-of-Concept Demonstration Platform 

 
3. THE REAL-TIME RESEARCH PLATFORM 

 
The Real-Time Research Platform is a scalable system 
consisting of a compact PCI rack containing a number of 
boards, see Figure 3. One contains a dual processor PC 
running Windows XP while the remainder are carrier boards 
supporting a flexible communications fabric that links up to 
4 processing nodes attached using daughter modules. Both 
the carrier and daughter boards are commercial off-the-shelf 
components. The carriers are critical to our approach since 
they contain communication architecture in the form of a 
ring that enable nodes to be dynamically connected 
together, with guaranteed fixed bandwidths and latency. 
 

 

Figure 3: The real-time research platform 

Figure 4 shows a typical arrangement of the RTRP with 
two communication rings and 4 processors.  Each module 
connected to communication fabric can be configured to 
receive data on one or more of the six available FIFO 
channels. Similarly each module can write to one or more of 
six channels. If the total number of channels in a particular 
HEART [3] configuration is less than six it is possible to 
allocate more than one time slot to a channel. Each 
connection between processors across a ring can be 
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assigned bandwidth in increments of 533Mbps up to a limit 
of 3.2Gbps, the maximum supported by each ring. 

 
Figure 4: HEART connections of RTRP  

 
The ring’s nodes support modules containing processors, 

ADCs, DACs and inter-ring communication devices. We 
are using boards containing DSPs and FPGAs. 
 
3.1 DSP module 
 
The DSP module supports a 300 MHz TI C6203 DSP [4] 
which is connected to both the host system and other 
modules via the data transfer fabric. The HERON FIFO 
interface is used to load DSP programs and to allow the 
DSP to send and receive data from other modules. This 
module also supports some digital I/O which connects to 
other system modules. 

 
3.2 FPGA module 
 
The FPGA module provides a Xilinx XC2VP7 Virtex-II Pro 
[5] FPGA connected to the data transfer fabric. As with the 
DSP module the FPGA is directly connected to the 100 
MHz 32 bit wide HERON FIFO interface. This interface 
can potentially feed data to the FPGA at gigabit rates whilst 
simultaneously accepting data at similar rates. The 
configuration of this interface is programmed via the Hunt 
host application.  
 

4. FUNCTIONAL DESCRIPTION LANGUAGE  
 
Configuration data is found at all levels of software-defined 
radio. For example, at the hardware level, a DSP binary file 
can be considered as configuration data that targets the DSP 
and configures it for a specific signal-processing function. 
Likewise an implementation-independent description of that 
function can be considered as configuration data that targets 
the configuration plane and is used to configure the 
software implementation of that part of the radio. 

In [6][7][8] we classified the principal configuration 
data types required for a software modem, showing that 
many types are well understood, e.g. compiled binary 
executables for microprocessors. Others, such as radio 
functional descriptions, are less well known with no 
commonly accepted representations. A recommendation 
was made that these types, particularly those concerning 
high-level descriptions, should be encapsulated using a 
common data-model, and packaged for transportation and 
storage using a common file format. Together each data-
model and file format constitutes a configuration language. 
Compressed XML and XML Schema [9] were selected as 
the file formats for containing the data and data-model 
respectively.  

A functional description language enables radio signal-
processing algorithms to be defined as a hierarchical flow of 
signals (data and control) between functions (termed 
processes in the language) communicating via 1-to-1 or 1-
to-many channels. The channels are connected to input and 
output ports on the functions. They define the input and 
output data types. In addition the description captures 
constraints and timing information, for example a function’s 
real-time deadlines and a channel’s maximum latency. The 
root of a hierarchy is known as an algorithm. An algorithm 
is just a function which contains other functions and 
channels. A complete radio modem is an example of an 
algorithm, one which must be broken up into sub-functions, 
such as turbo-decoders and filters. There is considerable 
flexibility in how each algorithm can be implemented, since 
each sub-function can be targeted to a different processor. 
Leaf functions, i.e. those that are not algorithms and have 
no sub-functions, must be implemented using a single target 
processor. 

The first stage in interpreting a functional description is 
to obtain the individual data items from the XML source. 
We assume that all such descriptions will initially be 
available as local XML files. (These may have been 
obtained either during initialisation of the equipment by a 
manufacturer/service provider etc, or by over-the-air 
download.) Subsequently the XML files must be parsed into 
a memory representation. The data in this representation can 
either be acted upon immediately or it can be transferred to 
a more sophisticated storage device, such as a local 
database. Figure 5 is an overview of the functional 
description service which is used by the CCM. Since an 
algorithm is always the starting point the language is known 
as the algorithm description language. 

The language’s XML Schema is a critical component; it 
defines the syntax of the XML documents, the structure of 
the XML database and classes in the object-oriented 
implementation of the service. The CCM and this service 
execute on the host PC of the RTRP. The CCM accesses the 
service through the algorithm description interface. In 
general there is a one-to-one mapping between elements in 
the XML Schema data-model and classes in the C++ 
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implementation. For example the Alg_Algorithm XML 
element represents an algorithm. The Alg_Algorithm class 
mirrors the XML element and, being at the top of the 
hierarchy, provides a large part of the algorithm description 
interface.  

Algorithm Description IF

Algorithm

Alg_Algorithm Alg_Process Alg_Channel

XM L Parser API

XM L ParserXM L DB M anager

XM L DB API

«real ize» «real ize»

«real ize»

 
Figure 5: Algorithm description service 

 
 

5. HARDWARE ABSTRACTION LAYER 
 
The configuration data are parsed by the PCC and 
implemented on the RTRP platform via RTRP_HAL. In a 
conventional system access to a hardware device is often 
achieved using a single operating system, which may be a 
RTOS if timeliness is an important concern. These 
operating systems generally apply to a specific type or 
group of processor types. We assume in the general case the 
target system will be composed of different types of 
processors, each potentially with their own operating 
system. Each OS may support a limited amount of inter-
processor communication. In the general case though, as in 
our hardware architecture, the communication device or 
devices may be independent of the individual operating 
systems.  From the CCM’s perspective, mapping and 
scheduling the functions is a complex task and it does not 
want to get involved in the individual details of different 
hardware. All it needs is to be able to manipulate primitives 
such as tasks and communication links, with a unified 
mechanism for reporting errors. The following Table 1 lists 
some of the generic configuration API for creating tasks, 
linking two tasks, deleting and abort a task across different 
execution environment hardware. 

TASK_NAME PARAMETERS  
CreateTask  TASK_ID,TASK_NAME, 

DEST_HARDWARE_ID, 
BINARY_MEMORY_ADDR, 
STARTUP_TIME 
PARAMETERS 

DeployTask TASK_ID 
LinkTasks PRODUCER_TASK_ID, 

CONSUMER_TASK_ID, 
MSG_LENGTH 

DeleteTask TASK_ID, WAIT_TO_FINISH 
AbortTask TASK_ID 

Table 1.  RTRP_HAL configuration API 
 
5.1 Task creation 
 
A task is a program context that can be executed on 
different hardware. In order to create a task, a unique 
TASK_ID is required. The task instance will be placed into 
the task database. The DEST_HARDWARE_ID specifies the 
destination hardware, and the BINARY_MEMORY_ADDR 
points to the memory address that stores the binary code for 
a specific hardware. The STARTUP_TIME is used for 
scheduling purpose, which specifies the time to trigger the 
task. The PARAMETERS provides configuration 
information for a task. 
 
5.2 Deploy task on a GPP 
 
GPPs provide software programmability by executing the 
applications on an instruction set architecture (ISA). By 
changing the software instructions, the functionality of the 
system is altered without changing the hardware.  In order 
to reconfigure GPP on Windows or Linux operating 
environment, dynamic loader objects are commonly used, 
e.g. Windows Dynamic Linkable Libraries (DLL) [10], and 
Linux shared library (.so) [11].  DLLs need to be relocated 
during loading, unless the fixed base it was built with 
happens to be unused in the loading process. Relocations to 
the same address can be shared, but if different processes 
have conflicting memory layouts, the loader needs to 
generate multiple copies of the DLL in memory.  
 
5.3 Deploy task on a DSP 
 
DSPs are specialised processors, which well suited to 
extremely complex maths-intensive tasks, with conditional 
processing. The performance of a DSP is limited by the 
clock rate, and the number of useful operations it can do per 
clock cycle. TI Dynamic Loader [12] is integrated into the 
RTRP_HAL to enable tasks to be deployed on the TI 6203 
DSP at run-time.  The dynamic loader is a general-purpose 
runtime library for loading program images. It can be used 
for loading dynamic images to an already running DSP 
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application. When installing a DSP module during 
execution, the reformatted image is provided to the dynamic 
loader.  The dynamic loader relocates the code and data of 
the module as needed, and places it in the memory of the TI 
DSP.  References within the module to already loaded 
software are resolved at this time. 

 
5.4 Deploy Task on a FPGA 
 
FPGAs, contain an array of computational elements whose 
functionality is determined programmable configuration 
bits. These elements, sometimes known as logic blocks, are 
connected using a set of routing resources that are also 
programmable. In this way, custom digital circuits can be 
mapped to the reconfigurable hardware by computing the 
logic functions of the circuit within the logic blocks, and 
using the configurable routing to connect the blocks 
together to form the necessary circuit, which in turn 
provides hardware programmability.  In order to deploy a 
task on VirtexIIpro FPGA chip, the Hunt Serial Bus (HSB) 
access functions are integrated into the RTRP_HAL. The 
FPGA can be reconfigured by downloading a new 
configuration bitstream via HSBs. 
 
5.5 Link creation  
 
Links are created through the RTRP_HAL API, and each 
link provides one-to-many connection mapping for the 
execution environment hardware.  Figure 6 shows the 
wrappers for defining link within the hardware, which is 
suitable for processor type hardware (e.g. GPP, and DSP). 
When a task is defined, a thread is attached to the task body 
as a link wrapper. Semaphore and shared memory access 
functions are also generated by the wrapper. After a result is 
produced by the producer functions, a semaphore is sent to 
the consumer thread with the corresponding memory 
address of the result. Finally, the consumer task will 
consume the result.  
 
 

 
 
 
 
 
 

Figure 6: Links between tasks on the same processor 

 Furthermore, Figure 7 explains a more sophisticated 
scenario for defining links between tasks on different 
processor. Extra tasks for crossing hardware 
communications are needed.  In our case, these are 
Read/Write functions for the communication FIFO between 
the source and destination hardware.  Results generated by a 

producer task will be routed to the consumer task via the 
FIFO.  
 

Figure 7: Links between tasks on different processor. 
 

6. WLAN OFDM SYSTEM IMPLEMENTATION 
 
A wireless LAN 802.11a OFDM system is being developed 
on our proof-of-concept SDR platform.  Figure 8 shows the 
block diagram of the system with a transmit chain and a 
receive chain. On the transmitter side, the input bits are 
scrambled, convolutionally encoded, punctured, interleaved, 
mapped, IFFTed, and added with a cyclic prefix and finally 
transmitted over RF via an antenna. On the receiver side, 
the incoming packet is synchronised using the coarse timing 
block and fine timing block estimates the channel state and 
information of the packet. The rest of the design blocks of 
the receiver perform the inverse of the operations performed 
at the transmitter.  

 
Figure 8: Block diagram of 802.11a OFDM system. 

The OFDM system is developed in C. In the preliminary 
experiment, two common blocks are chosen to demonstrate 
the switching between FPGA and DSP. Convolutional 
encoder and 64-point FFT are taken from the OFDM system 
and compiled on TI Code Composer Studio (CCS) for TI 
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6203 DSP. The relocatable object codes are loaded into 
DSP at runtime via the generic configuration API. For the 
Virtex II-Pro FPGA, convolution encoder and 64-point FFT 
are generated from Xilinx Core Generator and synthesised 
by the Xilinx ISE[13] tool flow. Table 2 summarised the 
size of the 802.11a binary components. For the same 
implementation, FPGA usually needs more memory than 
the DSP for storing the configuration data.  Compression 
can be implemented on the configuration data to reduce the 
memory consumption and latency for downloading such 
data. FPGA compression works by writing identical 
configuration frames once rather than many times. 
Configuration frames are arranged vertically. With the ZIP 
compression algorithm [14], the bitstream can be 
compressed much smaller. For example, the size of the 
compressed convolution encoder bitstream is reduced by 
48%, and the zipped version is reduced by 98%.  

 
 DSP 

object 
DSP 
zipped 
object 

FPGA 
bitstream 

FPGA 
compressed 
bitstream 

FPGA 
zipped 
bitstream 

Convolutional 
Encoder   

3K  1K  528K 275K 12K 

FFT  13K 3K 528K 376K 77K 

Table 2. Size (in bytes) of  chosen 802.11a components  
 

Though the FPGA provides a better algorithm 
implementation with less control flow and more parallel 
arithmetic and logic operations over DSP, it suffers higher 
reconfiguration overhead. Table 3 summarises the time to 
load different components into FPGA and DSP on our 
RTRP platform. From the table, we see that the FPGA 
introduces much longer latency for loading the 
reconfiguration data than the DSP.  This is mainly due to 
the relatively slow serial bus that is used to download 
bitstreams into the FPGA, and the average achievable 
bandwidth is less than 100 Kb/Sec. On the other hand, a fast 
speed FIFO for downloading DSP objects code is used, 
which guarantees 533Mbps bandwidth. With the 
compressed configuration data, an extra overhead for 
decompressing the data is also introduced. But the 
compression method is regarding as a trade-off between 
reconfiguration overhead and the time for downloading a 
component over the air. 

 
 
 
  

DSP 
object 

DSP 
zipped 
object 

FPGA 
bitstream 

FPGA 
compressed 
bitstream 

FPGA 
zipped 
bistream 

Convolutional 
Encoder 

0.011s 0.058s  2s 3s 3.47s 

FFT 0.023s 0.070s 13s  14s 14.47s 

Table 3.  Loading time of  chosen 802.11a components 
 

The size and loading time of the components provide 
quantised profiling information for the CCM, which can be 
used to make design-time and run-time decisions for 
switching components between different execution 
environment hardware.  

7. CONCLUSIONS AND FUTURE WORK 
 
A SDR proof-of-concept demonstration platform is 
presented in this paper. The hardware architecture of Real-
Time Research Platform (RTRP) is introduced. With the 
FDL description, an algorithm can be interpreted and 
executed on the platform. RTRP_HAL provides a generic 
configuration API for loading the components. An IEEE 
802.11a OFDM system is being implemented on the 
platform. Two components are chosen to demonstrate the 
run-time reconfiguration concept for SDR systems.  In the 
future, a CMM module running on a NOKIA 770 handheld 
device will be integrated with the current platform, and a 
mechanism for the dynamic, reliable and secure 
reconfiguration of SDR equipment will be demonstrated as 
part of the E2R project.  
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