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ABSTRACT 
 
 Code portability for FPGA-based signal processing is a 
significant aspect of recent efforts to define a hardware 
abstraction layer (HAL) for the signal processing subsystems of 
software-defined radios.  In this paper, we show how a platform-
based approach to FPGA design can provide an ability to target 
multiple FPGA families or an ASIC from a single source model.  
The approach combines direct mapping of a Simulink model 
with code generation of register-transfer level HDL.  We 
demonstrate that it is possible to generate portable code for DSP 
systems from Simulink without having to compromise 
performance of the FPGA realization.  This work complements 
HAL recommendations for portability and (executable) 
specification by focusing on mechanisms, guidelines, and 
methodologies for constructing signal processing functions in 
FPGAs.  
 

1. INTRODUCTION 
 
 Field-programmable gate arrays (FPGAs) are widely 
used to implement physical layer signal processing 
functions for software-defined radios (SDRs [1] [2]).  
FPGAs provide very high performance custom hardware 
solutions, and can be reconfigured in system, and when 
bringing up a new waveform in the modem.  Despite their 
reprogrammability, they have historically been considered 
part of the “hardware” within a modem, rather than part of 
the “software”.  Consequently, the SDR software control 
layer, or Software Communications Architecture 
(SCA[3]), has largely ignored issues related to the 
specification, configuration, signal transport, or inter-
component interfaces that are important to the platform 
provider of an SDR that exploits FPGAs. 
 The U.S. government has been a primary driver for 
SDRs, with significant investment in the technologies and 
products, e.g., as part of the Joint Tactical Radio System 
(JTRS) program run by the Joint Program Office (JPO) of 
the U.S. Department of Defense.  Whereas such 
government programs have lifetimes on the order of ten or 
more years, FPGA vendors continue to provide new 
devices roughly every 12-18 months.  The increased 
signal processing capability of new families of FPGAs has 
remained sufficiently compelling that most platforms 

require retooling to incorporate new devices as they 
become available.   
 Recognizing that the current SCA standard does not 
sufficiently address the design and deployment of the 
FPGA portion of the modem, the JPO has recently 
embarked upon a concentrated effort to extend the SCA to 
provide guidance and ideally, standardization, for the use 
of FPGA technologies within SDRs [4].  At roughly the 
same time, the Software Defined Radio Forum formed a 
working group devoted to providing recommendations for 
a hardware abstraction layer to assist in the development, 
maintenance, and cost management of SDRs [5]. 
 Many viewpoints have been brought forth by design 
tool, component, and platform vendors, as well as by 
system integrators and subcontractors for the JTRS 
program.  However, there is general agreement that FPGA 
code portability is an important, but to date, largely 
neglected aspect of design methodologies for SDRs. 
 In this paper, we describe a platform-based approach 
for obtaining portable FPGA source code, whilst 
simultaneously providing executable specifications, test 
harnesses, and “golden” test vectors (i.e., providing 
accurate input/output relations for establishing 
conformance to specification through simulation).  Our 
approach treats a high-level system model specified in 
Simulink [6] as the source code for an FPGA 
implementation.  A block in the model may map onto a set 
of intellectual property blocks provided by the vendor that 
exploit vendor-specific device resources to implement the 
block’s function efficiently in a number of FPGA 
families.  Alternatively, a block may map onto a 
behavioral description in a hardware description language 
that is inherently portable.  It is on the latter case that we 
focus in this paper.  The approach extends widely used 
FPGA design techniques, using industry standard design 
tools.  Although described in terms of proprietary (though 
commercially available) tools for Xilinx FPGAs, out 
approach is equally applicable to other devices.  
 In Section 2, we present several definitions of code 
portability, and comment on their feasibility with current 
device technologies and design tools.  Section 3 provides 
a brief introduction to a platform-based design 
methodology for implementing DSP systems in FPGAs 
that underlies our approach to code portability.  Section 4 
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describes a case study of the approach, building a 
fractionally spaced equalizer (FSE) for a QAM system 
that is relatively simple, but a representative example of a 
modem function well-suited to an FPGA. 
 

2. CODE PORTABILITY 
 
 All major FPGA vendors have multiple device 
product lines, each of which is further divided into 
families that are further divided into part types that differ 
in available resources, speed grade, and packaging.  For 
example, Xilinx has two primary FPGA product lines: 
Virtex, which targets highest performance and gate 
density, and Spartan, which targets high volume and 
lower cost applications.  The most recent families are 
Virtex-4 and Spartan-3, respectively [7][8]. 
 Because a new FPGA family is introduced roughly 
every 12-18 months, and the design cycle for a major 
SDR design can be a significant fraction of this period, 
the implications of code portability (or more accurately, 
non-portability) are clear.  Often a system must be built to 
target a family in advance of broadly available silicon. 
 Bitstream portability means that a bitstream for 
FPGA family v(i) will run directly, possibly via an 
intermediate run-time software layer, on a v(i+1) part.  In 
terms of cost reduction, it is also desirable that a bitstream 
for FPGA family v(i) run directly on a different family 
device s(j).  However, at the current time no FPGA 
vendor supports bitstream portability. 
 Source-level portability implies that source code 
written for device v(i) will run after recompilation (but 
otherwise without change) in device v(i+1).  It is desirable 
to have source level portability between families v(i) and 
s(i).  Many FPGA users adopt internal coding guidelines 
to facilitate full or near source-level portability.  In this 
paper, we describe one way in which source level 
portability can be achieved using existing devices and 
design tools. 
 

2.1. Register Transfer Level HDL 
 
 The prevailing abstraction in hardware description 
languages for FPGA design is register transfer level 
(RTL), which can be synthesized into device-specific 
logic resources [9].  At this level of abstraction, a design 
is a network of combinational circuits separated by 
registers.  Registers and other circuit elements are 
represented behaviorally through idioms inferable by 
commercial synthesis tools.  This style of coding allows 
the user to specify for example an addition operation with 
the operator ‘+’, with the synthesis tool mapping this 
appropriately to device specific architecture primitives. 
 Considerable progress has been made over recent 
years in commercial synthesis tools to efficiently target 

FPGAs.  In addition to technology mapping, synthesis 
tools also apply optimization algorithms to a circuit that 
preserve behavior, while improving the circuit quality 
under well-defined criteria (typically logic area or 
performance).  Of particular interest is retiming, which is 
the reallocation of unit delays (e.g. registers) throughout a 
circuit, in order to reduce the number of combinational 
logic levels [9].  There is a close correlation between the 
largest number of logic levels and the frequency with 
which bounding registers can be clocked without setup or 
hold time violations, so retiming is a particularly effective 
synthesis optimization. 
 

3. A PLATFORM-BASED APPROACH TO 
FPGA DESIGN 

 
 Design methodologies for FPGAs historically lagged 
those for application specific integrated circuits (ASICs) 
by roughly a decade, in large part because until recently, 
the design complexity lagged by roughly the same time.  
However, as device geometries have continued to shrink, 
the relative complexity of FPGA designs has increased 
more rapidly than that of ASICs.  Ideas relating to 
platform-based design, originally motivated by systems-
on-chip ASICs [10] have been increasingly adopted for 
FPGA design [11]. 
 We interpret a platform as an intermediary between 
abstract behavior and realizable function.  Viewed from 
above, the platform is a restriction on the space of all 
realizable systems, but one that can be usefully employed 
to capture the behavior of end applications.  Viewed from 
below, the platform is a restriction on the space of all 
possible applications, but one that can be readily realized. 
 More specifically, the platform is a set of arithmetic, 
logic, memory, and other functional abstractions that 
allow a user to specify an FPGA-based signal processing 
subsystem in a natural way.  Functions in the platform are 
chosen so that they can be implemented efficiently, 
possibly in a number of distinct ways according to 
additional constraints.  As “platform provider”, we 
implement a library of operators, functions, and objects 
that can be composed within a high-level framework to 
implement DSP systems.  To the application programmer, 
the library can be used (and extended) to specify a rich set 
of DSP systems. 
 In this paper, we address one aspect of platform-
based design, namely, how this approach can be used in a 
commercially available framework to obtain portable, yet 
highly efficient FPGA code. 
 

3.1 System Generator for DSP 
 
 System Generator for DSP is a software framework 
for modeling and implementing systems in FPGAs using 
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Simulink [11].  Simulink provides a powerful component-
based computing model that is well suited for specifying 
the concurrency in a custom signal processing 
architecture.  System Generator provides libraries of 
functions and hardware-related abstractions that can be 
used to model a signal processing system suitable for 
FPGAs.  Such models are bit and cycle accurate to FPGA 
hardware.  System Generator ensures this by providing 
automatic code generation from Simulink to a 
combination of synthesizeable HDL and intellectual 
property (IP) cores.  In addition, System Generator 
extends Simulink to include event-driven HDL semantics, 
hardware co-simulation, and rich customization interfaces 
traditionally associated with modern programming 
languages [2][13].   
 In this paper, we focus on an aspect of System 
Generator that is not widely appreciated: it has the ability 
to create generic RTL that is extremely efficient, and is 
portable.   
 There are three ways to obtain RTL code with System 
Generator: 

• Importing an HDL module using the System 
Generator Black Box interface.  Although a 
trivial “mapping”, this capability is powerful and 
should not be ignored; 

• Using blocks that have RTL implementations, 
such as the Expression block, Register, Delay, up 
and down samplers; 

• Using the MCode block, which maps MATLAB 
.m code to synthesizeable VHDL. 

Because of its importance and utility, we concentrate on 
the MCode block and its application. 
 

3.2 System Generator M-Code Block 
 
 The System Generator MCode block provides an 
interface for interpreting a MATLAB .m function in the 
context of a Simulink simulation. The block is a 
convenient and flexible way to realize arithmetic 
functions as well as finite state machines and control logic 
in the context of System Generator.  In contrast with the 
Simulink S-function API [6], the MCode block simply 
interprets m-code as its input-output relation.   
 The block accepts an m-code function as a mask 
parameter, and adapts its interface to that of the function.  
A function argument can be treated either as an input port 
or as a parameter internal to the function (i.e. run-time 
constant), under the control of a block mask parameter.  
Return values are interpreted as output ports on the block.  
The m-code is translated in a straightforward way into 
equivalent behavioral VHDL during code generation.   
 In the System Generator v6.3 release, the MCode 
block supports combinational functions and functions 
with internal state.  Language constructs include nested 

branches (switch, if/then/else), assignment, arithmetic 
operators (+, *), bit wise logical, and a number of other 
operators [12].  System Generator provides MATLAB and 
Simulink-based fixed-point data types (prior to the 
MATLAB R14 release, there was no fixed-point type 
available in MATLAB).   
 The MCode block automatically infers a lossless type 
for internal variables and return types, based on the input 
types.  In addition, the block performs dead code 
elimination and other optimizations during code 
generation.  By specifying m-code function arguments as 
internal parameters, it is straightforward to create 
parametric blocks that map very efficiently onto 
hardware. 
 The mapping from m-code into hardware uses well-
established rules (e.g., [14]).  As a simple example, a 2-to-
1 multiplexer is realized with the following m-function.   
 

function [c] = mux2to1(a, b sel) 
if (sel == 0), c = a; 
else, c = b, end 

 The output type is the smallest container necessary to 
represent inputs a and b after binary point alignment.  If 
the select signal is known at compile time, then declaring 
the sel input an internal parameter within the block mask 
directs System Generator to realize the function in 
hardware as a wire tied from the appropriate input port.  
This of course is a particularly simple example of dead-
code elimination. 
  

4. CASE STUDY: ADAPTIVE EQUALIZER 
 
 Often the flexibility attained by using high-level 
abstractions comes at a cost of efficiency in the resulting 
hardware realization.  In this section, we demonstrate that 
this is not always the case.  We employ the MCode block 
to convert a System Generator model that implements a 
fractionally spaced equalizer (FSE), originally designed to 
map onto Xilinx IP cores, into an equivalent model that is 
implemented entirely as RTL VHDL, automatically 
generated by System Generator.  What is perhaps most 
interesting, is that when the RTL design is mapped using 
the most recent (as of this writing) version of synthesis 
tools that incorporate retiming, it achieves a nearly 20% 
increase in achievable clock rate over the original design. 
 

4.1 FSE Model 
 
 The T/2 adaptive FSE has been designed for a 16-
QAM modulation system, sampling an input data stream 
twice per symbol [15].  The equalizer consists of three 
modules: an 8-tap complex LMS filter implemented with 
a two-way polyphase decomposition, a symbol demapper 
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 (also used to generate the “desired” signal for the LMS 
update), and the LMS update [3].   

 

 The original System Generator model for the T/2 
adaptive FSE has been included as a demonstration design 
since the System Generator v3.1 release.  In the v6.3 
release, both the original and fully synthesizeable models 
are provided.   It was not necessary to modify the 
structure of the design in any fundamental way to derive a 
fully synthesizeable model.  The hierarchy was preserved, 
and for the most part, only leaf nodes needed replacement 
by equivalent MCode blocks.   Figure 1.  QAM Symbol Demapper 

  The LMS filter is constructed of low level blocks, 
including adder/subtractors, accumulators, counters, 
multiplexers, multipliers, up- and down-samplers, and 
simple memory elements.  Delay blocks in the original 
model that employed SRL16 resources (shift register logic 
unique to Xilinx FPGAs) were replaced by generic 
register-based delay lines.  M-functions defining 
adder/subtractor, multiplexer, and multipliers were simply 
instrumented.  Counters and accumulators were 
constructed using the adder, delay, and constant blocks as 
Simulink subsystems.   

4.2 Implementation Results 
 
 The original and synthesizeable designs were built 
using System Generator v6.2 software, and each 
synthesized for a V-II Pro (-7 speed grade) and Spartan-3 
(-5 speed grade) FPGA using Synplify Pro 7.6, with 
retiming and pipelining options enabled.  The designs 
were run through mapping, placement, and routing using 
the Xilinx ISE 6.2.02i software, with highest placer and 
router effort levels.  This process was run repeatedly with 
different clock frequency constraints in order to determine 
the highest frequency obtainable.  The results, 
summarized in the following Table are somewhat 
surprising. 

 Several subsystems in the original model were 
realized as straightforward transcriptions into m-code.  
For example, the symbol demapper shown in Fig. 1 was 
replaced by a MCode block with the MATLAB function 
shown below.  
 Part 

Type 
MHz 
Cores 

MHz 
Synth 

LUTs 
Cores 

LUTs 
Synth 

DFFs 
Cores 

DFF 
Synth 

xc2vp20  88.9 104.1 1636 1595 1868 2195 

xc3s150
0  

79.3 85.5 1636 1531 1868 2193 

function [v] = QAM4map(i) 
 
% type declarations  
utype = {xlUnsigned,8,8,xlRound, xlSaturate}; 
stype = {xlSigned,8, 8, xlRound, xlSaturate}; 
rtype = {xlSigned,10,8, xlRound, xlSaturate}; 

 %symbolic constants 
 two3rds = xfix(utype, 2/3); 

one3rd  = xfix(stype, 1/3);  Although one might expect the generic RTL 
implementation to run at a lower clock frequency than the 
original that employed IP cores, in fact the reverse was 
true.  For both Virtex-II Pro and Spartan-3 devices, the 
RTL version ran at an appreciably higher clock frequency.  
The RTL implementations used more DFF registers than 
the core-based implementations (recall the MCode did not 
specify SRL16 resources, although the synthesis tool was 
free to map onto them when it could infer them correctly).   

neg3rd  = xfix(stype, -1/3); 
% state variables (pipeline latency = 2) 
persistent r0, r0 = xl_state(0, rtype); 
persistent r1, r1 = xl_state(0, rtype); 
 
v  = r1, r1 = r0; 
msb= xl_slice(i,xl_nbits(i)-1,xl_nbits(i)-1); 
if (msb == 1) 
  if (two3rds < -i), r0 = -1;  Current synthesis tools treat IP cores as black boxes, 

and no optimizations are available that cross module 
boundaries.  The RTL design in contrast allowed the 
synthesis tool to freely move registers and optimize logic 
across module boundaries.  It should be noted however, 
that in all prior versions of the Synplify Pro (as well as all 
versions of the Xilinx XST tool), retiming did not provide 
significant speed-up for this design.  One concludes that 

  else, r0 = neg3rd; 
  end 
else 
  if (two3rds < i),  r0 = 1; 
  else, r0 = one3rd; 
  end 
end 
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logic synthesis optimizations necessary for high-
performance, portable design are still in an early stage of 
development. 
 

5. CONCLUSIONS 
 

 With the increased adoption of FPGAs as signal 
processors comes an increased expectation for design 
flows and methodologies that support programming 
models similar to those for general purpose and DSP 
processors.  Code portability, at least at the source level 
(i.e., admitting recompilation) is of fundamental 
importance.  Although FPGA source code is not as widely 
portable as code for general-purpose microprocessors, we 
have demonstrated how System Generator and similar 
design tools provide considerable progress towards this 
end.  Using an adaptive FSE as an example, we have 
shown how a single System Generator model can be used 
to specify both behavior and implementation, producing a 
generic RTL implementation suitable for an FPGA.  The 
design exploits retiming and logic synthesis optimizations 
in order to achieve high performance.      
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