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ABSTRACT

The understanding of fundamental approaches to designing
and operating Modular Software Defined Radio (Mod-SDR)
are of immediate relevance for offering flexible services
to mobile users, by means of a single communication de-
vice. We review Half-Frame Pipelining (HFP) as a way
of operating any software defined PHY layer on a specific
multiprocessor hardware architecture. In this paper HFP is
improved against former results with respect to the runtime
efficiency of its partitioning concept and the achievable
speedup. A comparison to another approach, Graph Du-
plication Pipelining (GDP), reveals HFP’s advantages and
disadvantages. PHY layer signal processing for both circuit-
switched and packet-switched services is discussed in detail.
Finally, we conclude on the utility of HFP for application in
Mod-SDR terminals.

Keywords – Modular SDR, allocation of computing re-
sources, PHY layer firmware, multiprocess synchronization

1. MODULAR SOFTWARE DEFINED RADIO

The notion of software in a Software Defined Radio environ-
ment often remains in the vague and may even be employed
to summarize all sorts of executable code across all layers
of a terminal. Most notably, however, physical (PHY) layer
signal processing imposes the most severe constraints on the
execution of code: Hard real-time physical signal processing
as opposed to a growing share of best effort computing on
higher layers of the protocol stack.

We focus on a centralized, non-preemptive operating
system (being a vital part of the terminal’s firmware) that
administers the execution of software modules for any
software defined PHY layer of a wireless terminal. The
concept of Mod-SDR has been introduced [1][2] in order to
derive general design guidelines under these circumstances.
Throughout its lifetime the operating system will encounter
a variety of software modules and processing runtimes. We
claim that this variety is so vast that it can be modeled as
a random process. Furthermore, the generalized modeling
of SDR software includes random graphs [3]. The latter

serve as an abstract, structural representation of wireless
communication standards, where nodes are software modules
and intermediate computation results flow along directed
edges.

In order to understand the fundamental design principles
of Mod-SDR systems, we have restricted the number of
processors to L = 2. In this paper we continue to study
Mod-SDR using our stochastic linear resource-runtime model
[4] with Gaussian probability density function (pdf), rectan-
gularly windowed over [cmin; cmax] = [0.5; 1.5], and pdf
parameters µc = 1.0, σc = 0.25. The case L = 2 may
seem to represent too low a number of processors, but that
number will not be excessive in mobile terminals anyway,
and mastering the case L=2 is necessary before looking at
any more general case.

2. CIRCUIT-SWITCHED SERVICES

We have introduced HFP [3] as a method for scheduling PHY
layer software modules, with a focus on circuit-switched
services. The basic idea of HFP is to divide a graph into
a left and a right partition, in order to allow one processor
to execute code of the second half of some radio frame n,
while the other processor already executes code of the first
half of its successor frame (n+1).

2.1. Partitioning for Half-Frame Pipelining

In [3] we have proposed to solve the HFP-associated parti-
tioning problem by a spectral approach, based solely on a
composite edge cost involving nodes’ B∗ values as well as
the original potential link cost. Unfortunately, we observed
that this procedure occasionally results in non-vertical cuts,
so post-processing is necessary. Furthermore, we have intro-
duced a load balancing procedure which was based on nodes’
B values [3]. The best speedup results on random graphs
were obtained by this combination of spectral partitioning
and B level load balancing, but it remained questionable
whether there was a more straightforward solution to HFP
partitioning for Mod-SDR. Especially the need for two post-
processing steps following a method as elegant and fast as
spectral partitioning appeared to be inappropriate and too
time-consuming.
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In a first attempt to improve the overall runtime for
partitioning we have determined B∗ levels for all nodes in
both forward and reverse direction. Then, prior to spectral
partitioning, we have averaged the forward and the (inverted)
reverse B∗ levels in order to capture the graph structure
before and after a specific node, but to no avail: The two
post-processing steps did remain necessary to guarantee a
vertical cut.

As a consequence we became aware of the fact that
the spectral method merely provides a starting partition and
that the observed speedup results can mainly be ascribed
to the load balancing procedure. Then we may as well run
the iterative load balancing procedure starting from a trivial
partition (where all nodes except for the target node initially
belong to one partition), thus saving the runtime of the entire
spectral approach. Furthermore, B level load balancing is
based on selecting the node with maximum B level for
transfer to the smaller partition. This certainly guarantees a
vertical cut, but maximum B level is only a sufficient, not a
necessary condition: All nodes with outgoing edges pointing
to nodes of no other than the smaller partition are eligible for
a transfer. Those include but are not limited to the maximum
B level node.

Another drawback of B level load balancing is its inabil-
ity to balance transferred node runtime against additional link
cost incurred by that transfer. In contrast, the Kernighan/Lin
(KL) set exchange procedure, which we studied earlier in the
context of Mod-SDR [4], takes into account both runtime and
link cost. Therefore, it is an ideal candidate to replace B level
load balancing.

2.2. Algorithm Timing Results
Figure 1 shows the different algorithm runtimes (CPU time)
as a function of relative bus speed β. The constant β
determines how much faster a processor can transfer a certain

Fig. 1. Partitioning algorithm runtimes

data block over a bus rather than produce the same data
block as the output of a module [3]. The measurements are
represented in the form µ̂ ± σ̂, where µ̂ is the estimated
average algorithm runtime, σ̂ is an estimate for the standard
deviation
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and the sample size is K = 2000 per β. We recognize that
trivial partitioning + KL load balancing is about five times
faster than the initial approach if bus transfers dominate the
modular system (slow buses, β � 1), and it is about twice as
fast for fast buses (β > 1). Note that the standard deviation
is not due to measurement errors in the simulation code
acquiring the CPU time, but caused by algorithm response
to the random graphs. This becomes all the more evident
as we look at the increased σ̂ values under KL partitioning
around β =1, where bus transfer and signal processing node
runtimes fall in the same order of magnitude.

2.3. Speedup Results
Figure 2 shows the achievable fraction of maximum speedup
[5] as a function of β for both the former approach (dashed
contour lines only) and trivial partitioning + KL load balanc-
ing (dots for speedup measurements, and solid contour lines
for the 5%, the 50%, and the 95% quantile. Note that β values
supporting the contour lines are more closely spaced than
the log grid where curvature is high.) We observe that the
simpler and faster KL method (with the same effect, namely
partitioning for HFP) outperforms our initial partitioning and
load balancing approach: As indicated by the solid median
contour line the majority of Mod-SDR realizations remains
above 0.5 s, even for low values of β. More interesting for the
practical application of HFP, however, is the high β region,
where speedup approaches its limit s=1 closer and in a more
condensed way. Moreover, if we move towards lower values
of β (for power saving reasons, for example), the speedup
degradation is more graceful than before.

2.4. Comparison to Graph Duplication Pipelining
We have seen that HFP is suboptimal regarding speedup and
that speedup loss against the upper bound s depends on β. In
contrast, an optimal scheme such as GDP [6] reaches s for
all β. The basic idea of GDP is the following: Duplicate the
entire graph and assign a complete copy to each processor.
This way, partitioning is not an issue at all, and producing a
dense static schedule is quite easy [6].

A major drawback of GDP, however, is its increased
memory demand due to the duplication process: For each
copy of the graph both input (I) and output (O) memory must
be allocated in the I/O space where the PHY layer hardware
system interfaces to other parts (analog RF frontend, service
access points of higher layers) of the signal processing
system.
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Fig. 2. Half-Frame Pipelining, speedup as a function of relative bus speed

HFP, on the contrary, allocates the I/O space only once
because it operates on a single copy of the graph. Never-
theless, it requires some system-internal shared memory for
the transfer of intermediate results between the processors,
in the form of a separate hardware component. This means
an increased hardware design effort, but it does not worsen
HFP’s overall memory budget. GDP also needs such memory
space, just in the form of distributed memory (associated to
every processor) and – again – twice as much of it.

To sum up, we can state that HFP’s main advantage
is moderate memory demand, which comes at the price of
some speedup loss against the theoretical upper bound s. To
keep this loss small, HFP requires a fast, power-inefficient
system bus. Therefore, only if memory demand proves to be
a critical design issue, HFP may be competitive against GDP
for circuit-switched services.

3. PACKET-SWITCHED SERVICES
So far, we have only discussed PHY layer signal processing
for circuit-switched services. However, there is a growing
interest in packet-oriented services, especially as radio com-
munication devices and laptop computers merge into wireless
personal digital assistants and as the Internet Protocol (IP)
continues to represent a major portion of all data traffic.

3.1. WLAN Example
As an introductory example, let us consider the transmit-
ter of an OFDM-based wireless LAN standard such as
IEEE802.11a. Its PHY layer signal processing system trans-
forms incoming data bits (including both user data and
higher layer control data) into OFDM symbol packets that
are transmitted over the antenna. The creation of a single
OFDM symbol involves computations which can be captured
in a directed graph, in the same way as before. To form
a complete packet of N OFDM symbols (or of N “radio
frames”, to be more general) all graph computations need to
be repeated N times.

3.2. Generalization
It is important to notice that both the order of execution
of software modules and all their processing runtimes re-
main unchanged during these repetitions. The processing
just transforms different bits into adjacent (but otherwise
independent) radio frames. Furthermore, be aware of a basic
property of communication standards: For any kind of com-
munication to be successful, all communication partners must
respect common signal processing steps, or, in other words,
agree on a common standard. Possibly, quality of service
(in the form of bit error rates, or other measures) may still
be negotiated between the partners, but once communication
starts, both intra-packet and intra-standard signal processing
is deterministic. We do not see any reason for some statistical
demand for processing power [7] on the PHY layer of
a Mod-SDR. The only intra-standard parameter that will
change over time is the packet size N . Whenever small
packet sizes are dominant, the filling and the emptying of
the software pipeline will cause runtime overhead and hence
reduce speedup. It remains to be discussed how to operate
best a Mod-SDR terminal offering packet-switched services
to the user.

3.3. Simulation of Packet-Oriented Wireless Standards
In the following, the transmitter of a packet-oriented wireless
communication standard is considered. An equivalent line of
arguments can be constructed for the receiver side of such a
standard.

First of all, we assume that higher layer data bits of
an entire packet are available at the input of the PHY
layer signal processing system, so that input data processing
can be triggered at arbitrary, equidistant, or recurrent non-
equidistant instants in time. This assumption is not at all far-
fetched since, in comparison to the output memory, the input
memory required to store input bits at the system interface
is relatively small. This is because both data representation
word length and the number of samples per radio frame tend
to grow as signal processing advances across the PHY layer
towards the analog RF frontend.

Second, in order to render the operating system firmware
as simple as possible, we assume that both processors are
exclusively reserved for PHY layer signal processing as soon
as bit 1 of frame 1 is input to the system. Likewise, both
processors are released only after the last output sample of
frame N has left the system.

3.4. Results for Half-Frame Pipelining
Figure 3 shows the scheduling scheme for HFP and N
radio frames per packet. Processor activity is plotted over
time. The proposed order of execution of regular signal
processing nodes (P-nodes), bus transfer nodes (B-nodes),
and input/output nodes (I-/O-nodes) is given in detail in the
enlarged elliptical area, which is a zoom into the steady state
of the HFP schedule. The filling and the emptying of the
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Fig. 3. HFP, scheduling for packet processing, N frames per packet

pipeline can be readily identified in the figure. In the sequel,
the timing reference for output processing be the execution
of the first O-node per radio frame. Trigger instants are
indicated by an impulse train along the time axis, and the first
trigger instant is marked by T0. All following timing-related
figures are organized this way. Figure 3 shows that output
processing triggers for packet-oriented HFP are equidistant,
as a matter of principle.

Originally, the absolute speedup s is defined as the
reservation time of a mono-processor divided by that of a
multi-processor. In the sequel, however, we prefer to use the
relative speedup y = s/s [5]. Figure 4 shows the simulation
results for HFP and some small numbers of frames per
packet, 2≤N ≤7. For reasons of legibility, only the contour
lines of the 5%, the 50%, and the 90% quantile are plotted.
Depending on the packet size N , it is easy to derive an upper
bound on the relative speedup from Fig. 3 by letting β → ∞
(all bus-related execution times approach zero):

Fig. 4. HFP, packet processing, speedup as a function of relative bus speed

y HFP = s HFP/s <
N

N + 1

Figure 4 also shows these upper bounds as dashed horizontal
lines.

3.5. Results for Graph Duplication Pipelining
Figure 5 shows a scheduling scheme that represents the
fastest possible way of completing N frame computations
per packet under the GDP framework. We observe that the
filling and the emptying of the pipeline consume very little
time, but the trigger instants are non-equidistant.

Fig. 5. GDP, non-equidistant trigger instants, high speedup

Figure 6 shows the speedup results for GDP, the above
scheduling scheme and 2≤N ≤7. It can be shown [6] that
here the relative speedup is bound from below by N/(N +1),
and that this bound is indeed achieved for odd numbers of
frames per packet (see N ∈{3; 5; 7} in Fig. 6) and reasonable
bus speed β.

Continuous transmission of every packet by the analog
RF frontend requires the PHY layer to support equidistant
output processing triggers. If we enforce such triggering, we
necessarily increase GDP’s memory demand: Figure 7 shows
that new output memory for some frame (n+1) needs to be
allocated before the RF transmission of frame (n−1) has
even been started. Therefore, the output memory spaces of
these two frames co-exist, in addition to the anyway separate

Fig. 6. GDP, packet processing, speedup as a function of relative bus speed
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Fig. 7. GDP, enforced equidistant trigger instants, high memory demand

output memory space for frame n computed on the other
processor. We have already pointed out in section 3 that
output memory is likely to be greater than input memory
at the transmitter. Therefore, we certainly expect GDP with
enforced equidistant trigger instants to create significant
memory overhead.

An alternative solution to both sustaining GDP and
supporting equidistant triggers is sketched in Fig. 8. All
computations executed on the second processor are time-
shifted to become aligned with equidistant trigger instants.
This way, the output memory can be re-allocated for frame
(n+1) after the RF transmission of the previous frame (n−1)
has been completed.

Fig. 8. GDP, equidistant trigger instants, reduced speedup

A drawback of this alternative is a reduction in speedup.
It is easy to derive from Fig. 8 that now the achievable
fraction of maximum speedup is exactly N/(N +1) for all
N ≥ 2, independent of β. That is to say: We achieve no
more speedup than indicated by the dashed lines in Fig.
6. Nonetheless, those limits are upper bounds for packet-
oriented HFP. Therefore, we conclude that all proposed GDP
scheduling schemes outperform HFP under the described
conditions of packet processing.

4. RELEVANCE TO ESTABLISHED WLAN
STANDARDS

The expected average speedup can only be predicted if packet
size statistics of some tangible WLAN implementation are
known. Hitherto, we have only shown speedup contributions
for small N . A naive working assumption could be that
packet size among established WLAN standards is much
larger than N = 7 anyway, because short packets natu-
rally imply relatively large overhead (and, of course, small
speedup). If packet size was large anyway, our discussion of
speedup results for small N would be irrelevant. In order to
reveal that short packets are indeed of practical relevance to
established WLAN implementations, a packet transmission
scenario based on the IEEE802.11a standard [8] has been
simulated (see Fig. 9).

Fig. 9. WLAN simulation scenario

The required IP traffic model has been adopted from
[9]. It is an integral model that does not distinguish between
service types. An uplink/downlink traffic ratio of 1/4 has
been assumed, and the number of mobile terminals (MTs)
around the access point (AP) has been set to five. Both the
MAC layer and the PHY layer have been implemented at a
high degree of detail. All functions like error control, beacon
transmission, hidden station avoidance, channel coding etc.
are considered. The PHY layer operates in 64-QAM at a
code rate of R = 3/4 whenever the MAC layer delivers
data packets for processing. MAC layer control packets
(such as RTS, CTS, ACK, etc.) are transmitted using BPSK
modulation, although QPSK and 16-QAM are admissible,
too [8]. Packet size histograms have been generated for an
indoor channel [10] and a vehicle-to-vehicle channel [11]
with a coherence time of TC ≈ f−1

D,max = 6 ms for both of
them.

Figure 10 shows the simulation results for the indoor
channel and average signal-to-noise ratios ranging from 10
dB to 30 dB. The packet size is given in multiples of OFDM
symbols, excluding the preamble of length 16 µs (the length
of 4 OFDM symbols) and the SIGNAL field (1 OFDM
symbol). Certainly, the traffic model includes IP packets of
up to 1500 bytes (larger packets close to 40 symbols and 60
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Fig. 10. Packet size histograms, IP traffic, indoor channel

symbols), but regardless of the average SNR, we observe
a massive occurrence of transmissions with less than 10
OFDM symbols. With increasing SNR the relative frequency
of occurrence of packet size N = 5 grows, and that of
size N = 7 shrinks, while N = 6 as well as all larger
packets remain virtually unaffected by the average SNR of
the channel. Results for the vehicle-to-vehicle channel (see
Fig. 11) exhibit a very similar packet size histogram pattern.

A theoretical projection may be that a high level of
SNR represents a “best case”, if small N are a design
concern, because low SNRs would certainly imply more
packet errors and thus lead to an increase in the number
of short MAC layer control packets. This is true indeed,
but we can give a more precise interpretation here based
on our simulations: N = 5 corresponds to Clear To Send
(CTS) and Acknowledgement (ACK) packets of size 14
bytes each, while Request To Send (RTS) packets of size
20 bytes are transformed into N = 7 OFDM symbols. Of
course, the PHY layer traffic is a mixture of MAC layer data
and control packets, and their individual contributions are
indistinguishable in the integral model. Nevertheless, we will
argue later why the data packet contributions are more or less
independent of SNR. For the time being, let us think of these
contributions as a constant (per N ) histogram floor, which
is deductible from the integral histogram measurement. As
a consequence, the remainder must represent MAC layer
control packets.

Now, if we are at a high level of average SNR, the
control packet size ratio of (N = 5) : (N = 7) is about
2 : 1. This fits our expectation that “for good channels”
nearly all data transmissions (of arbitrary size) are successful,
preceeded by an RTS/CTS handshake and followed by an
ACK. If we go towards lower SNR, however, all packets
become increasingly vulnerable to packet errors. Especially,
if RTS fails, the handshake is physically interrupted by the
channel, and the transmitter just re-attempts an RTS after

Fig. 11. Packet size histograms, IP traffic, vehicle-to-vehicle channel

some timeout delay. This way the portion of RTS increases
relative to all other packet types, but notably against CTS
and ACK (see both Fig. 10 and Fig. 11).

Finally, data packets are virtually unaffected by the
average channel SNR, because their transmission is con-
ditional on the success of the RTS/CTS handshake. Even
if the average channel SNR is low, the instantaneous SNR
may be high. Should the initial RTS/CTS handshake prove
successful, then such a high instantaneous SNR is very likely
to be sustained over the entire data packet transmission
time. Even the longest IP packets (1500 bytes) transform
into PHY layer packets of size N = 56 OFDM symbols
(224 µs), plus the preamble and the SIGNAL field, then
totaling 244 µs. A complete RTS/CTS/data/ACK sequence
[8] amounts to less than 480 µs, which is much shorter than
the channel coherence time of TC = 6 ms. In other words,
data packet transmissions only take place when the channel is
successfully probed to be good by the RTS/CTS handshake.

5. CONCLUSION
We have briefly reviewed the concept of Mod-SDR and the
modeling of PHY layer software by directed graphs. In a
first step, HFP has been devised as a method for scheduling
software modules if the PHY layer is to support circuit-
switched services. We have refined our approach to graph
partitioning for HFP in terms of both algorithm runtime
and speedup. Then we have compared HFP to GDP with
respect to speedup and memory demand. Based on these
considerations and on the computer simulations presented
in section 2 we can draw the following conclusions:

• HFP is suboptimal regarding speedup, and it requires
high bus speeds β to keep speedup loss against the
optimum small.

• HFP for circuit-switched services is systematically
outperformed by GDP that, in turn, requires more
memory than HFP.
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• The most simple and effective solution to HFP is
Kernighan/Lin partitioning, starting from a trivial par-
tition configuration.

In a second step, we have analyzed packet-oriented
HFP, the underlying motivation being a growing interest
in packet-switched services and networks, which Mod-SDR
terminals must support seamlessly. We have presented the
scheduling scheme of HFP along with speedup results for
packet computations and an upper bound, depending on the
number of radio frames per packet. The subsequent analysis
of GDP scheduling has turned up three options with mutually
exclusive advantages: High speedup, equidistant trigger in-
stants, or moderate memory demand. The simulation results
have shown that GDP speedup is at least N/(N +1). Based
on the results of section 3 we can state the following:

• HFP inherently supports equidistant output processing
triggers and requires less memory than GDP which
can only trade either speedup or non-equidistant trig-
gering for memory.

• Still, packet-oriented HFP is systematically outper-
formed by GDP, regardless of both GDP scheduling
options and packet size statistics.

Finally, we have shown that small numbers of radio
frames per packet (and thus the way of operating Mod-
SDR) are indeed of practical relevance to established WLAN
standards. For the example of our IEEE802.11a scenario
packets with a small number of OFDM symbols do easily
amount to a great share among all PHY layer packets, not
depending too much on the channel type and average SNR,
as we have discovered in section 4.

We conclude that, in general, HFP can merely prove
competitive against GDP if memory is a critical issue for
the design of a Mod-SDR terminal. Otherwise, GDP is to
be preferred when offering either circuit-switched or packet-
switched services to the mobile user.
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