

Interference-aware power coordination algorithm for 5G Ultra-Dense Networks (UDN)

Presented by

Alexis Anzaldo

Problem Context

Ultra-Dense Network

UDN characteristics

- Enhance the user connections
- Offload the Macro Base Station traffic
- Increase the spectral reuse

Resource allocation problem

Optimization Problem

$$max \sum_{i=1}^{I} \sum_{u \in \{i\}} \sum_{q \in \{u\}} B_{u,q} log_{2}(1 + SINR_{u,q})$$

$$SINR_{u,q} = \frac{P_{u,q}L_{i,u}\alpha_{u,q}}{N + \sum_{j\neq i}^{I} \sum_{w\neq u}^{W}P_{w,q}L_{j,u}}$$
s. t.
(1) $\sum_{u \in \{i\}} \sum_{q \in \{u\}} P_{u,q} \leq P_{max}^{i}, \forall i$
(2) $\sum_{u \in \{i\}} \sum_{q \in \{u\}} B_{u,q} \leq B_{max}^{i}, \forall i$
(3) $SINR_{u,q} \geq SINR_{th}$

$$F = \frac{C}{1 + \alpha P_{1} + \beta P_{2}}$$

$$C: Network Throughput P_{1}: Power Penalty P_{2}: Unserver Users Penalty a, \beta: weigth constant$$

Winncomm 2019, 20 November, UCSD, La Jolla, CA USCD. 5

 $\alpha \gg \beta$

Genetic Algorithm process (1/3)

Initial population generation

Equal power transmission

$$P_{prom}^{Rb} = \frac{P_{max}^i}{Q^i}, \forall i$$

 Q^i : Number of channels of BS *i*. P^i_{max} : Maximum power of BS *i*.

Gene power range $[(P_{prom}^{Rb})/2, (P_{prom}^{Rb}) * 2]$

Gene: Represents the power in a channel

Chromosome : Represent the power allocation on all channels

Population: Represent the whole set of chromosomes

Genetic Algorithm process (2/3)

K is the population size

 R_i is the position of chromosome *i* respect to the throughput in descent order

Parent 1 $P_{1,1}P_{1,2}P_{1,3} \cdots P_{1,0}P_{2,1}P_{2,2} \cdots P_{2,0} \cdots P_{u,0}$ Parent 2 $P_{1,1}P_{1,2}P_{1,3} \cdots P_{1,0}P_{2,1}P_{2,2} \cdots P_{2,0} \cdots P_{u,0}$

Crossover

Crossover by BLX- α operator [2]

$$\begin{cases} ub_i = \max(x_i^{(1)}, x_i^{(2)}) \\ lb_i = min(x_i^{(1)}, x_i^{(2)}) \\ I = ub_i - lb_i \end{cases}$$

Random power values between these limits

 $[lb_i - I\alpha, ub_i + I\alpha]$

 ub_i : Upper bound of gene i of the parents lb_i : Lower bound of gene i of the parents I: Maximum range of gen i α : Random uniform value between [0,1]

Genetic Algorithm process (3/3)

Mutation and replacement

 $[(P_{prom}^{Rb})/2, (P_{prom}^{Rb}) * 2]$

Mutation probability: 1%

Replacement: CD/RW [3]

Detention criteria

Iterations	100	1000	2000	3000	4000	5000
Throughput (Gbps)	1.99	2.81	3.01	3.11	3.17	3.25
Gain	-	40.97	7.23	3.28	2.09	1.48

Genetic algorithm parameters

Crossover	BLX-α [2]
Detention criteria	3000 iterations
Initial population	Random Generation
Mutation probability	1%
Population size	30 chromosomes
Replacement strategy	CD/RW [3]
Selection method	Ranking Selection [4]

[2] Sorsa, A., Leiviskä, K. Real-coded genetic algorithms and nonlinear parameter identification. IS 2008 - IEEE International Conference on Intelligent Systems, Varna, Bulgaria, September 6-8, 2008.
[3] Lozano, Manuel & Herrera, Francisco & Cano, José. (1970). Replacement Strategies to Maintain Useful Diversity in Steady-State Genetic Algorithms. 10.1007/3-540-32400-3_7.
[4] N. Sivanandam, S & Deepa, S N. (2008). Introduction to Genetic Algorithms.

Results

Simulation Scenario

[5] M. Ding, D. Lopez-Perez, H. Claussen, M. A. Kaafar, "On the Fundamental Characteristics of Ultra Dense Small Cell Networks", *IEEE Network*, vol. 32, no. 3, pp 92-100, May/June 2018.

Simulation Parameters

Parameter	Value	
Channel bandwidth	180 KHz	
Fading Rayleigh parameter	1	
FBS power	24 dBm	
FBS radius	10, 25 m	
GA Iterations	3000	
Initial population	30	
MBS power	46 dBm	
MBS radius	250 m	
Noise power density	-174 dBm/Hz	
Density of Users (UED)	300, 600 UE/km ²	
SINR-threshold	22.4 dB	
Total channels	60	
Downlink pathloss model		

LOS Pathloss	$103.8 + 20.9 \log_{10} d \ [dB], \qquad (d \ in \ km)$
NLOS Pathloss	$145.4 + 37.5 \log_{10} d \ [dB], \qquad (d \ in \ km)$
LOS Probability	$\begin{cases} 1 - 5exp\left(\frac{-0.156}{d}\right), & 0 < d \le 0.0667 \ km \\ 5 \exp\left(\frac{-d}{0.03}\right), & d > 0.0667 \ km \end{cases}$

[6] 3GPP, "TR 36.828: Further Enhancements to LTE Time Division Duplex for Downlink-Uplink Interference Management and Traffic Adaptation," June 2012

Results

Results

Conclusion

- Network densification is one promising strategy to accomplish 5G Mobile Systems capacity goals.
- The benefits of densification are limited because of interference and spectrum sharing among small-cells.
- Resource Allocation (RA) strategies can efficiently manage or avoid interference between small-cells.
- With a proper power allocation strategy is possible to maximize the network capacity and the percentage of users attended simultaneously.
- The robustness of our energy allocation algorithm must be improved to ensure that under all conditions, the total number of users in the UDN is served.

Thanks!