

MIDDLEWARE TRANSPORTS FOR EMBEDDED SOFTWARE RADIO

Roy M. Bell (Raytheon Company, Network Centric Systems, Fort Wayne, Indiana, USA;

rmbell@Raytheon.com);

ABSTRACT

Embedded systems are undeniably migrating from hardware

to software, and software systems are undeniably using more

standard software components. Examples include the use of

commercial operating systems and middleware products

such as web services and CORBA. Some software

developers buck the trend with custom software components

in an attempt to gain a short term size or performance

advantage, but with the increasing speed of processors,

increasing size of memory and increasing demand for more

functionality; the long-term trend is to avoid custom

components when standardized components meet the need.

Using standard components allows developers to reduce

time to market or spend their time increasing the

functionality and sophistication of their applications.

The JTRS standard supports plug-n-play systems by

standardizing the APIs that access and control radio

applications and components. These APIs are expressed in

both C language and CORBA IDL. Proponents of the

CORBA APIs perceive advantages in modularity, reliability,

and increased functionality. Proponents of the C language

APIs do not extol its virtues, but instead point to CORBA

tendencies toward bloated size and performance. These

perceived disadvantages are being overcome.

As systems grow larger they become more brittle, take

longer to develop, and reduce programmer productivity.

Programming teams can regain the advantages of small

system development by partitioning systems into

independent parts. These parts collaborate to form the

complete solution. A partitioning strategy will only be

effective if the partitions are highly cohesive, and the inter-

communication mechanisms work well.

This paper compares communication mechanisms for

embedded systems development. Unlike middleware

alternatives such as web services; CORBA is becoming

increasingly available on DSPs and FPGAs. CORBA is

often a superior strategy, and a good candidate for many

radio applications. Its advantages are compelling and its

potential disadvantages can be mitigated with customized

transports.

This document does not contain technical data as defined by

the International Traffic in Arms Regulations, 22 CFR

120.10(a), and is therefore authorized for publication.

1. INTRODUCTION

The value of a system is based on its functionality, its

performance, and its perceived reliability. There are plenty

of ways to improve the value of a system by spending time,

effort, or money. The trick is to find ways to maximize the

value obtained for the cost expended. Knuth [1] was the first

to extol computer programming as an art form and to say

that one can maximize value by mastering the art. Raymond

[2] significantly extends this concept by describing the art of

UNIX programming. He said that UNIX is designed to be

very efficient in launching programs. One should strive to

form a system from small, reusable, individualized parts that

spring into being when needed, and go away when their job

is complete. One should avoid large highly complex,

continuously running, do-everything programs filled with

lots of threads to process messages. They are much harder to

debug. Matloff and Salzman [3] describe the art of

debugging, and it begins with the statement that small

programs are easier.

Small modules are easier to develop, easier to debug, easier

to maintain, and easier to ensure correctness. Large modules

require more oversight, a more rigorous development

processes, and more levels of management. A large system

not only requires more software developers, but also more

managers, more planning, more inter-coordination meetings,

etc. All of these things grow at a faster rate than the number

of lines code. If a program is too big for the available RAM,

its performance will be reduced while the OS swaps pieces

in and out. Thus partitioning a program into smaller pieces

may yield better performance.

A development team might be better off partitioning the

implementation into multiple pieces. The sum of the cost for

developing the individual pieces could be less and the

overall reliability could be higher. Naturally these pieces

will have to be combined to form the overall solution. So,

the downside to partitioning an implementation is that the

Proceedings of the SDR 11 Technical Conference and Product Exposition, Copyright © 2011 Wireless Innovation Forum All
Rights Reserved

369

individual pieces require runtime coordination and inter-

communication.

There are multiple ways to partition an embedded system

including 1) separate into programming language functions,

2) use standardized APIs, 3) use Berkeley sockets, and 4)

use CORBA. These will all be discussed individually.

2. THE ART OF MODULARITY

Good modularity is often the key to success in software

development projects. When partitioning a system; one has

to consider the size of each piece and the interfaces between

them. If diverse processing elements such as DSPs, FPGAs,

and GPPs are available, one also has to consider which piece

will operate best on each type of processor. Even though

large chunks of software cost more to produce than small

ones, it would be a mistake to partition a system into too

many pieces. More separate pieces require more runtime

coordination and inter-communication. The art of

modularity is selecting the right partitioning strategy and

finding the right balance between the size of software

modules and he need for inter-communication.

Good modularity is also dependent on good interfaces. The

success of an interface depends on complexity, throughput,

and the degree of separation. A highly complex interface

could lead to mistakes, misunderstandings, and rework; and

this could defeat the advantage of partitioning. A simple

interface that requires high throughput can also reduce the

value of the overall system with poor performance. The

degree of separation contributes directly to the productivity

of the software development team. Moving code to separate

functions achieves a low degree of separation. It is an

improvement because these pieces can be compiled

separately, but the client and implementation are still highly

dependent on each other for correct operation. A function

not only passes data through parameters and the return

value, but a function can also have side effects on global

data and it can influence timing, synchronization, and

concurrency.

A standardized API does not improve the degree of

separation between the client and the implementation. At

runtime the client and implementation are still linked

together, and it is possible for side effects to occur.

However, software development productivity is improved

because the behavior and potential side effects are defined

by the standard. Highly popular standards such as POSIX

are well understood with lots of documentation [1][5][6][7]

and many implementations. Productivity is improved

precisely because of this dependable behavior.

Maximum separation is achieved through the combination of

platform independence, language independence, and

location independence. Each of these forms of independence

reduce the number of assumptions that can be made about

the characteristics of the other parts of the system. Platform

independence allows modules to co-exist on different types

of processing elements such as FPGAs, DSPs, and GPPs.

When a client written in C++ does not know the

implementation language of the server; it can operate

independently because it cannot make assumptions about

things such as the size of an integer, or the way a string is

represented in memory. Location independence is perhaps

the most important way that client software can be

developed independently from the server. When neither the

client nor the server knows the location of each other's

runtime implementation; they cannot assume that they are

operating on the same processing element. Again this is very

important to software defined radios, which may be

partitioned among a diverse set of processing elements.

3. BERKELEY SOCKETS

The socket API is well documented and well understood

[1][8]. Sockets achieve a measure of location independence

because they can exchange messages with distributed pieces

that reside on the same processor or on different types of

processors. A program that relies on sockets is very portable

because sockets have a standard API that is available in

nearly all operating systems available today. A lot of

software does not have to be concerned with timing issues or

performance and are perfectly happy with the behavior of

sockets. The following list of things could be a problem

when building distributed programs using sockets:

 Sockets may not be available if there is a PCI bus
(or some other non-Ethernet technology) connecting
the source to the destination

 A program will require some type of byte swapping
software if the processing element of the destination
has a different type of endian architecture

 If there are multiple different types of messages
being passed through a socket; there must be a way
for the destination to quickly determine which type
of message was received, and different message
types will likely be forwarded to different
destinations

 If a client is written in a different computer language
than the destination, there must be an agreement on
the way to represent integers, strings, floats, and
complex data types, and there will likely be a need
to translate from one representation to the other

370

4. CORBA

CORBA is a well-documented [9][10][11][12] standard

defined by the Object Management Group (OMG). It

provides the maximum degree of separation through

platform independence, language independence, and

location independence. Platform independence is achieved

through the General Inter-ORB Protocol (GIOP), which

defines a standard way to represent things such as integers,

floats, strings, composite data structures, constrained and

unconstrained sequences, etc. Language independence is

achieved through the definition of an Interface Description

Language (IDL) and a defined set of mappings to

implementation languages such as C, C++, Java, and Ada.

Location independence is achieved through the use of an

Interoperable Object Reference, which eliminates the need

for clients and servers to know the location of each other.

CORBA is usually the best option available for radio

software development. It is highly popular, it has a large

number of free and commercial implementations, and it

offers the possibility to create good modular designs through

its achievement of the maximum degree of separation.

CORBA implementations are a ready solution for part of the

job. Often they do more than is strictly necessary, or more

than would be done if a custom solution was implemented.

CORBA not only makes it possible to produce a solution in

less time, but it also can create a better solution than what

was planned.

CORBA is part of the JTRS Software Communication

Architecture (SCA), which among other things defines a

standardized configuration and deployment mechanisms.

The CORBA advantages make it the preferred choice. The

only question is whether the perceived CORBA

disadvantages will cause another choice to be made.

5. CORBA ALTERNATE TRANSPORTS

Usually CORBA messages are transported through Ethernet

and TCP/IP using the Internet Inter-ORB Protocol (IIOP).

The combination of TCP/IP and IIOP can be a lot of

overhead if the source and destination are on the same

processor. It can be especially bad if the source and

destination are in the same memory space. Most CORBA

implementations provide a short-circuit mechanism for

passing messages in the same memory space, but they do not

optimize message passing when source and destination are

on the same processor, but in different memory spaces.

CORBA can introduce other overhead such as mandated

exception processing etc. This extra overhead can hurt

performance or reduce resources such as processing power

or memory space that could be used for other tasks.

The decision to extend CORBA to DSPs or FPGAs will

depend on whether there is a CORBA implementation for

the chosen device, whether there is room for the

implementation of the CORBA infrastructure, and whether

the performance is sufficient. The performance of CORBA

is entirely dependent on its data transport efficiency. The

biggest potential contributor to CORBA inefficiency is the

transport technology, which may introduce needless data

copying through various levels of the transport

implementation.

Figure 1: Performance in Megabits/sec for RedHat Linux

Figure 1 shows performance in Megabits/sec for RedHat

Linux running in a virtual machine with on an Intel 2.53

GHz dual-core processor with 4 Gbytes of RAM. Each test

was run with 2, 4, 8, 16, 32, and 64 Kbyte message sizes.

The first 4 tests compare raw sockets to PrismTech e*ORB

version 1.6.9. The second and third set of bars show a

modest penalty for using CORBA to get the nice modularity

benefits of platform independence, language independence,

and location independence. In the fourth set of bars we see

that eORB/C uses multiple threads to actually beat sockets.

The OMG has adopted the Extensible Transport Framework

(ETF) specification, which provides a standard way for users

to define a substitute for TCP/IIOP. The fifth set of bars in

figure 1 show the performance of shared memory, and the

last two set of bars show the CORBA penalty for a shared

memory transport.

371

Figure 2: Performance in Megabits/sec for VxWorks

Figure 2 shows the exact same set of tests run on VxWorks

6.8. Both figures show that a CORBA ETF solution built on

shared memory provides good performance when compared

to TCP/IIOP and only slightly slower than the theoretical

maximum achievable with raw shared memory. Clients and

servers get all of the benefits provided by CORBA, but

without having to depend on a shared memory API or the

knowledge that the client and server are running on the same

processing element. CORBA ETF can be extended to other

onboard transport mechanisms such as POSIX message

queues or other off board mechanisms such as transports

through a PCI bus.

6. CONCLUSION

Software systems are highly complex. Almost all can benefit

from partitioning. The art of modularity is in the choosing of

the right size for each partition and the best interfaces

between partitions. This is especially true for embedded

systems with interfaces to different types of processing

elements such as GPPs, DSPs, and FPGAs. Systems that

define interfaces using “C” language APIs are less reusable

because they mix data transport with the application.

CORBA avoids this problem by offering the maximum

degree of separation through language independence,

platform independence, and location independence. This

means that CORBA maximizes modularity and reuse of the

application software. One can use a CORBA alternate

transport to increase CORBA’s availability or to maintain

transport performance. CORBA is often the right solution

for an embedded software radio implementation.

7. REFERENCES

[1] M. Kerrisk, The LINUX Programming Interface, No Starch

Press: 2010. ISBN 1-59327-220-0
[2] D. Knuth, The Art of Computer Programming, Addison-

Wesley: 1998. ISBN 0-201-48541-9
[3] E. Raymond, The Art of UNIX Programming, Addison-

Wesley: 2003. ISBN 0-13-142901-9
[4] N. Matloff, P. J. Salzman, The Art of Debugging, No Starch

Press: 2010. ISBN 1-59327-002-X
[5] M. Rochkind, Advanced UNIX Programming, Addison-

Wesley: 2004. ISBN 013-141154-3
[6] W. R. Stevens, Advanced Programming in the UNIX

Environment, Addison-Wesley: 1993. ISBN 0-20156-317-7
[7] D. R. Butenhof, Programming with POSIX Threads,

Addison-Wesley: 2004. ISBN 0-20163-392-2
[8] W. R. Stevens, B. Fenner, A. M. Rudoff, Unix Network

Programming, Volume 1: The Sockets Networking API (3rd
Edition), Addison-Wesley: 2003. ISBN 0-13141-155-1

[9] T. J. Mowbray, R. Zahavi, Essential CORBA, John Wiley &
Sons: 1995. ISBN 0-47110-611-9

[10] A. Vogel, K. Duddy, Java Programming with CORBA, John
Wiley & Sons: 1998. ISBN 0-47124-765-0

[11] A. Puder, K. Roemer, MICO is CORBA, Morgan Kaufmann:
1998. ISBN 3-93258-811-8

[12] T. J. Mowbray, R. C. Malveau, CORBA Design Principles,
John Wiley & Sons: 1999. ISBN 0-47115-882-8

372

