

PREDICTIVE SCHEDULING OF JOB COMBINATIONS IN SDR SYSTEMS

David Guevorkian (Department of Signal Processing, Faculty of Computing and

Electrical Engineering, Tampere University of Technology, Tampere, Finland; e-mail:

david.guevorkian@tut.fi) and Jan Westmeijer (mimoOn GmbH, Duisburg, Germany; e-

mail: jan.westmeijer@mimoon.de)

ABSTRACT

In SDR systems, different combinations of radios each

consisting of a number of algorithms and having strict

timing constraints must be implemented on top of a shared

computational platform typically consisting of several

processors and HW accelerators. To handle such

complicated system, efficient scheduler design policies are

needed. In this work, we propose a scheduling policy where

during each established state where a fixed job combination

(fixed set of active radios) is executed, new schedules are

designed and stored for all possible states that may occur

after the current state. Effectively, this means that static,

highly optimized schedules are designed dynamically for the

sequence of stochastically changing job combinations. This

way, advantages of the static and dynamic scheduling

policies are combined. The proposed method can be applied

to scheduler design for any “piece-wise stationary”

application where relatively small number of stationary jobs

must be supported but the sequence of job combinations is

unpredictable. Therefore, the system is stationary for a

period of time when combination of jobs is fixed but is non-

stationary during larger time periods when job combinations

may stochastically change.

1. INTRODUCTION

Software Defined Radio (SDR) is in the focus of research

community during last decade since it may provide new

possibilities in Communication Technologies (see [1]-[5]).

The computational platform of an SDR system typically

involves several processors and HW accelerators that are

shared between different radios [1] – [5]. Each radio,

hereafter called job, consists of a number of algorithms,

hereafter called tasks, and must be implemented under very

hard real time constraints. To provide the required

functionality where each task meets its deadline and to

achieve efficient sharing of HW resources between the jobs,

the system should use a sophisticated scheduler. Hence,

creating efficient scheduling policies is an important and

difficult stage in designing of SDR systems.

 Scheduler creation involves processor assignment,

decision on the order of task execution, and decision on the

firing (execution) times of each task (see [6]). In

conventional scheduler design strategies each of these steps

may be implemented either statically (at compile time) or

dynamically (at run time) depending on the features of the

application [6], [7]. For static applications with fixed order

of tasks having fixed execution times, all three steps may be

implemented statically at compile time whereas for

applications with unpredictable order of tasks and their

execution times some or all these steps may only be

implemented dynamically in run time.

 Specific to SDR systems is that they involve relatively

small number of jobs (three to ten different radios) and each

job is more or less static with a nearly fixed order of

algorithms having predictable worst-case execution times [1]

- [5]. However, the overall system is far not static due to

unpredictable (stochastic) sequence of switching radios

On/Off and changing their modes. We call such applications

with relatively long periods of static states but with

unpredictable changes between these states “piece-wise

static” applications. Another specific to SDR systems is that

the scheduler for a set of active radios should be designed in

a way such that the radios from this set that were active also

at previous step keep running smoothly. Therefore, the

scheduler should also take into account the history of

arriving to the current set of active radios. Yet another

specific feature of SDR systems is very short time periods

where different radio algorithms should be completed. As

discussed in the next section, these mentioned specifics limit

the use of conventional schedulers for SDR systems.

 In this work, we propose new scheduler design policy

that combines advantages of static and dynamic scheduling

policies by dynamically creating static schedules for each

combination of active radios that may occur after the

moment of scheduler creation. That is, at each static state in

parallel to implementing active radios corresponding to that

state, schedulers for all possible sets of active radios that

may occur as the result of any possible change are created

Proceedings of the SDR 11 Technical Conference and Product Exposition, Copyright © 2011 Wireless Innovation Forum All
Rights Reserved

293

mailto:david.guevorkian@tut.fi

Figure 1. Classification of conventional schedulers according to decision time of three main scheduling

steps: processor assignment, task ordering, and task firing.

and stored. Once a change happens, the corresponding

scheduler is readily available to use. The proposed scheduler

design approach can be extended to any piece-wise

stationary application/system.

 The rest of the paper is organized as follows. Section 2

presents a short background on schedulers from static versus

dynamic point of view and with respect to suitability to SDR

systems. In Section 3, formal description of the proposed

method is presented. Section 4 is a discussion on advantages

and drawbacks of the proposed approach. Finally, Section 5

is the conclusion.

2. BACKGROUND

In a real-time computing platform where several jobs, each

consisting of several tasks and having own time constraints,

in particular, in an SDR system, a scheduler is used to

define the processing units where each task is to be

implemented, as well as the timed sequence according to

which these tasks are to be implemented. Efficiency and

even applicability of different scheduling policies depend on

the requirements of the set of jobs that are supposed to be

implemented by the platform. Scheduler creation involves

three main steps (see [6]):

1. processor assignment where a decision is made on

allocating tasks to processors or hardware

accelerators;

2. decision on the order of execution of tasks on each

processor or hardware accelerator;

3. decision on the firing (or, equivalently, execution)

times of each actor (task).

 Conventionally, it is assumed that each of these three

steps may be performed either at run-time (a dynamic

strategy) or at compile time (static strategy) [6]. Thus

scheduling policy implies not only the rule according to

which tasks are assigned to processors, ordered or fired but

also the relative time (either run-time or compile time) when

these steps are performed. Classification of schedulers

according to decision times of the above mentioned three

scheduling steps is illustrated on Fig. 1. Applicability area of

each type of schedulers is restricted to own set of

applications. A conventional rule of thumb is that more

dynamic schedulers are more general. That is, those

schedulers where more of the above three steps are

performed on run-time are having larger area of applicability

(see Fig. 3).

 For example, fully static schedulers may only be applied

to jobs with fully stationary behavior or to fixed

combinations of such jobs. Most general schedulers are fully

dynamic ones.

 Another conventional rule of thumb is that more

dynamic is the scheduler less it is efficient because of two

reasons. Firstly, in the dynamic scheduler the order of tasks

or at least their firing times are unknown. Therefore, the

Ordered transaction: compile time decision on processor assignment, and processor

communication as well as on task ordering; run-time decision on task firing instances.

Fully static: compile time decision on processor assignment, task ordering and task firing times.

Self-timed: compile time decision on processor allocation (but not on processor communication)

and on task ordering; run-time decision on task firing instances.

Quasi-static: compile time decision on processor assignment and partially on task ordering and

firing instances; partially run-time decision on task ordering and firing instances (for data dependent

tasks)

Static assignment: compile time decision on processor assignment; run-time decision on task

orderinfg and on firing instances.

294

Figure 2. The block-diagram of the proposed predictive scheduling method for piece-wise stationary applications.

actual implementation of the task is delayed since the

scheduler makes the decision only after the moment when

the task needs be implemented. More importantly, some time

is needed to call or download the programs executing the

corresponding task. Secondly, as the decisions are made on

run-time, real time constraints to the scheduling algorithm

imply no or low optimization of the decisions. This is

especially critical for SDR systems where execution times of

individual tasks are very short and real-time constraints are

very hard.

No a prior art scheduling policy is devoted to applications

where each job itself is a stationary one but their

combinations are dynamically changed in time. We shall call

“piece-wise stationary” those applications where several

stationary jobs may be initiated or terminated at arbitrary

time instances.

The system is idle

(Job combination  is

running)

A job reconfiguration is requested, i.e. a job

kJ ,  1,...,k n is activated

Download the schedule for

the Current Set of Jobs

 CSJ kJ

Run the system for the Current

Set of Jobs CSJ until a job

reconfiguration request

Create and store schedules for all

possible sets of jobs  CSJ lJ and

 CSJ tJ (tJ CSJ),

 , 1,...,l t n that may occure after

Current Set of Jobs CSJ.

Schedules for all n

individual jobs kJ ,

1,...,k n are predefined

at compile time.

A job reconfiguration is requested, i.e. a job

lJ ,  1,...,l n is activated or a job tJ ,

 1,...,t n is terminated.

Form (monitor) the new Current Set of

Jobs:  CSJ=CSJ lJ or

 CSJ=CSJ tJ

Download the schedule for

the Current Set of Jobs

 CSJ kJ

295

 Typical piece-wise stationary application is Software

Defined Radio (SDR) systems where each radio standard is

more or less a stationary job with a fixed sequence of tasks

having predictable worst-case execution times but every

radio may turn On/Off, or change its mode at an arbitrary

time instance.

 In the next section we propose new approach to

scheduler design timing for piece-wise stationary systems. In

the proposed approach during each established stationary

state of the system schedules are created for all possible t

which the system may arrive next.

3. PREDICTIVE SCHEDULING

The proposed predictive scheduling method for “piece-wise

stationary systems” may be described using the block-

diagram presented on Fig. 2.

Suppose the system is piece-wise stationary and is

meant to support a set of jobs 1,..., nJ J . That is, each job

kJ , 1,...,k n is a stationary job which may externally be

requested to start or to terminate at an arbitrary

unpredictable time instance. At compile time only schedules

for all individual jobs
kJ , 1,...,k n are created and are

stored in a devoted memory space in the system. Any valid

scheduling algorithm may be used to create the actual

schedules. In an exemplary embodiment this may be the

algorithm described in [7]. When the system is switch on

due to a request to start a job (say, kJ), the corresponding

stored schedule is used and the platform executes that job

kJ . At this moment the Current Set of Jobs (CSJ) is

 kCSJ J . Later the CSJ is dynamically changed during

operation of the system. Every time when CSJ is changed,

new schedules for all possible sets of jobs that may occur

after the CSJ are created. Creation of schedules may be

considered as one of the jobs from the set of all supported

jobs 1,..., nJ J . That is, schedules for  lJCSJ , and

 tJCSJ (CSJtJ),  ntl ,...,1,  that may occur after

the CSJ are created (note that this way several instances of

the same job are allowed, in the case that letting only one

instance of each job (as in SDR) makes sense, we should

restrict CSJlJ). Again, any valid scheduling algorithm,

for example the one described in [7], may be used to create

the actual schedules. However, the schedules may then be

optimized using one or another optimization technique.

Created schedules are stored into the devoted memory space.

Note that the maximum number of schedules that need be

stored is n2 , which is significantly far less than
n22 , the

number of schedules that need be stored in the case where

all possible job combination transactions are scheduled at

compile time. When all the (optimized) schedules are

created and stored the system only runs the CSJ. As soon as

a request for changing the CSJ is received the corresponding

schedule is downloaded from the devoted memory location

and the system runs the new CSJ. In an unlikely case that the

CSJ change request is received earlier than all the schedules

are created the scheduler terminates creation of all possible

schedules for  lJCSJ , and  tJCSJ (CSJtJ),

 ntl ,...,1,  but only creates or downloads the created

schedule for the requested new CSJ.

In the proposed approach, the scheduling overhead

is minimal because the schedules need not be created at run-

time as well as because the real-time constraints on creating

schedules is significantly relaxed and more sophisticated

scheduling policies and optimization techniques may be

utilized .

 .

4. DISCUSSION

In Fig. 3 efficiencies of different scheduling policies

classified according to relative time (either run-time or

compile time) of performing the three main scheduling steps

are summarized similarly as it was done in [6].

 The efficiency in this figure is understood as the

generality of the scheduling policy vs. the run-time overhead

of that policy. It can be seen that the overhead is smaller for

more static schedulers. This means that for a given

application it is advantageous to use as more static

scheduling policy as is possible for that application.

Unfortunately, the applicability area (generality) of static

schedulers is rather limited.

For example, an SDR system can only be scheduled using

quasi-static or more dynamic scheduling approaches [7],

which, however, require rather significant run-time

overhead. In addition, only very simple scheduling

algorithms may be used due to very tight real-time

constraints on schedule creation.

 In Fig. 3, also the proposed predictive scheduling

method is positioned. Since the schedules for next sets of

jobs are created in parallel with executing current set of

jobs, the proposed method implies very low run-.time

overhead, comparable with that of fully static scheduling

policy. On the other hand, it has larger applicability area

covering, for example the SDR application since the used

schedules are dynamically changed as the system state is

changed. The generality of the proposed method is at least

comparable with that of quasi-static scheduling approach. In

addition, since the real-time constraint in creating the

schedules is significantly relaxed (compared to the case of

quasi-static approach) rather sophisticated scheduling

algorithms involving optimization techniques may be

utilized.

296

Figure 3. Efficiency (run-time overhead vs. generality) of scheduling methods depending on the time of making decisions on

three main scheduling steps.

Therefore, the proposed predictive scheduling method

provides high scheduling efficiency. The cost for achieving

this efficiency is a devoted memory space where the

schedules are to be stored and, optionally a dedicated small

functional unit or a share of the system’s CPU. However,

these costs are rather small.

4. CONCLUSION

New predictive scheduling policy is proposed that

dynamically creates static schedules every time when

system’s steady state is changed. The proposed method suits

well to SDR systems since it requires minimal overhead andf

allows dynamic creation of optimized schedulers with

respect to the history of system evolution.

7. REFERENCES

[1] A. Ahtiainen, H. Berg, U. Lücking. A. Pärssinen. and J.

Westmeijer, “Architecting Software Radio,” Proceeidngs
of the SDR 07 Technical Conference and product Exposition,
2007.

[2] A. Ahtiainen, K. van Berkel, D. van Kampen, O.
Moreira, A. Piipponen, T. Zetterman, ” Multi-radio
Scheduling and Resource Sharing on a Software
Defined Radio Computing Platform,” Proceeidngs of the
SDR 08 Technical Conference and product Exposition, 2008.

[3] L. Harju and J. Nurmi, “Hardware platform for software-
defined WCDMA/OFDM baseband receiver implementation,”
IET Comput. Digit. Tec., Vol.. No 5, pp. 640-652, 2007.

[4] F. Kasperski, O.Pierrelee, F. Dotto, M. Sarlotte, ”High data
rate fully flexible SDR modem advanced configurable
architecture & development methodology,” Proceedings of
Design, Automation & Test in Europe Conference &
Exhibition, 2009. DATE '09, pp. 1040-1044, 2009.

[5] H. Berg, C. Brunelli and U. Lücking, “Analyzing models
of computation for software defined radio applications,”
Proceedings of International Symposium on System-on-
Chip, 2008 (SOC-2008), pp. 1-4, 2008.

[6] S. Sriram, Sh. S. Bhattacharyya, Embedded
Multiprocessors. Scheduling and Synchronization.
Signal Processing and Communication Series, Marcel
Dekker , Inc., 2000, 327.

[7] O. Moreira, F. Valente, M. Bekooij, “Scheduling
multiple independent hard-real-time jobs on a
heterogeneous multiprocessor,” Proceedings of the 7th
ACM & IEEE international conference on Embedded
software. 2007, pp. 57-66. 2007.

Run-time overhead

G
en

er
al

it
y

P
red

ictiv
e

The proposed

approach
Prior art

Applicable to piece-

wise stationary

applications

Fully dynamic

Static assignment

Quasi-static

Self-timed

Ordered transaction

Applicable to

any application

Fully static

Applicable to stationary

applications

297

