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ABSTRACT 

 

In SDR systems, different combinations of radios each 

consisting of a number of algorithms and having strict 

timing constraints must be implemented on top of a shared 

computational platform typically consisting of several 

processors and HW accelerators. To handle such 

complicated system, efficient scheduler design policies are 

needed. In this work, we propose a scheduling policy where 

during each established state where a fixed job combination 

(fixed set of active radios) is executed, new schedules are 

designed and stored for all possible states that may occur 

after the current state. Effectively, this means that static, 

highly optimized schedules are designed dynamically for the 

sequence of stochastically changing job combinations. This 

way, advantages of the static and dynamic scheduling 

policies are combined. The proposed method can be applied 

to scheduler design for any “piece-wise stationary” 

application where relatively small number of stationary jobs 

must be supported but the sequence of job combinations is 

unpredictable. Therefore, the system is stationary for a 

period of time when combination of jobs is fixed but is non-

stationary during larger time periods when job combinations 

may stochastically change.     

 

 

1. INTRODUCTION 

 

Software Defined Radio (SDR) is in the focus of research 

community during last decade since it may provide new 

possibilities in Communication Technologies (see [1]-[5]). 

The computational platform of an SDR system typically 

involves several processors and HW accelerators that are 

shared between different radios [1] – [5]. Each radio, 

hereafter called job, consists of a number of algorithms, 

hereafter called tasks, and must be implemented under very 

hard real time constraints. To provide the required 

functionality where each task meets its deadline and to 

achieve efficient sharing of HW resources between the jobs, 

the system should use a sophisticated scheduler. Hence, 

creating efficient scheduling policies is an important and 

difficult stage in designing of SDR systems.  

 Scheduler creation involves processor assignment, 

decision on the order of task execution, and decision on the 

firing (execution) times of each task (see [6]). In 

conventional scheduler design strategies each of these steps 

may be implemented either statically (at compile time) or 

dynamically (at run time) depending on the features of the 

application [6], [7]. For static applications with fixed order 

of tasks having fixed execution times, all three steps may be 

implemented statically at compile time whereas for 

applications with unpredictable order of tasks and their 

execution times some or all these steps may only be 

implemented dynamically in run time.  

 Specific to SDR systems is that they involve relatively 

small number of jobs (three to ten different radios) and each 

job is more or less static with a nearly fixed order of 

algorithms having predictable worst-case execution times [1] 

- [5]. However, the overall system is far not static due to 

unpredictable (stochastic) sequence of switching radios 

On/Off and changing their modes. We call such applications 

with relatively long periods of static states but with 

unpredictable changes between these states “piece-wise 

static” applications. Another specific to SDR systems is that 

the scheduler for a set of active radios should be designed in 

a way such that the radios from this set that were active also 

at previous step keep running smoothly. Therefore, the 

scheduler should also take into account the history of 

arriving to the current set of active radios. Yet another 

specific feature of SDR systems is very short time periods 

where different radio algorithms should be completed. As 

discussed in the next section, these mentioned specifics limit 

the use of conventional schedulers for SDR systems. 

 In this work, we propose new scheduler design policy 

that combines advantages of static and dynamic scheduling 

policies by dynamically creating static schedules for each 

combination of active radios that may occur after the 

moment of scheduler creation. That is, at each static state in 

parallel to implementing active radios corresponding to that 

state, schedulers for all possible sets of active radios that 

may occur as the result of any possible change are created            
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Figure 1. Classification of conventional schedulers according to decision time of three main scheduling 

steps: processor assignment, task ordering, and task firing.    
 

 

and stored. Once a change happens, the corresponding 

scheduler is readily available to use. The proposed scheduler 

design approach can be extended to any piece-wise 

stationary application/system. 

 The rest of the paper is organized as follows. Section 2 

presents a short background on schedulers from static versus 

dynamic point of view and with respect to suitability to SDR 

systems.  In Section 3, formal description of the proposed 

method is presented. Section 4 is a discussion on advantages 

and drawbacks of the proposed approach. Finally, Section 5 

is the conclusion.       

 

 

2. BACKGROUND 

 

In a real-time computing platform where several jobs, each 

consisting of several tasks and having own time constraints, 

in particular, in an SDR system,  a scheduler is used to 

define the processing units where each task is to be 

implemented, as well as the timed sequence according to 

which these tasks are to be implemented. Efficiency and 

even applicability of different scheduling policies depend on 

the requirements of the set of jobs that are supposed to be 

implemented by the platform. Scheduler creation involves 

three main steps (see [ 6]):  

1. processor assignment where a decision is made on 

allocating tasks to processors or hardware 

accelerators; 

2. decision on the order of execution of tasks on each 

processor or hardware accelerator; 

3. decision on the firing (or, equivalently, execution) 

times of each actor (task).   

 

 Conventionally, it is assumed that each of these three 

steps may be performed either at run-time (a dynamic 

strategy) or at compile time (static strategy) [6]. Thus 

scheduling policy implies not only the rule according to 

which tasks are assigned to processors, ordered or fired but 

also the relative time (either run-time or compile time) when 

these steps are performed. Classification of schedulers 

according to decision times of the above mentioned three 

scheduling steps is illustrated on Fig. 1. Applicability area of 

each type of schedulers is restricted to own set of 

applications. A conventional rule of thumb is that more 

dynamic schedulers are more general. That is, those 

schedulers where more of the above three steps are 

performed on run-time are having larger area of applicability 

(see Fig. 3).  

 For example, fully static schedulers may only be applied 

to jobs with fully stationary behavior or to fixed 

combinations of such jobs. Most general schedulers are fully 

dynamic ones.  

 Another conventional rule of thumb is that more 

dynamic is the scheduler less it is efficient because of two 

reasons. Firstly, in the dynamic scheduler the order of tasks 

or at least their firing times are unknown. Therefore, the  

Ordered transaction: compile time decision on processor assignment, and processor 

communication as well as on task ordering; run-time decision on task firing instances. 

Fully static: compile time decision on processor assignment, task ordering and task firing times.  

Self-timed: compile time decision on processor allocation (but not on processor communication) 

and on task ordering; run-time decision on task firing instances. 

Quasi-static: compile time decision on processor assignment and partially on task ordering and 

firing instances; partially run-time decision on task ordering and firing instances (for data dependent 

tasks) 

Static assignment: compile time decision on processor assignment; run-time decision on task 

orderinfg and on firing instances.  
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Figure 2. The block-diagram of the proposed predictive scheduling method for piece-wise stationary applications. 

 
actual implementation of the task is delayed since the 

scheduler makes the decision only after the moment when 

the task needs be implemented. More importantly, some time 

is needed to call or download the programs executing the 

corresponding task. Secondly, as the decisions are made on 

run-time, real time constraints to the scheduling algorithm 

imply no or low optimization of the decisions. This is 

especially critical for SDR systems where execution times of 

individual tasks are very short and real-time constraints are 

very hard. 

No a prior art scheduling policy is devoted to applications 

where each job itself is a stationary one but their 

combinations are dynamically changed in time. We shall call 

“piece-wise stationary” those applications where several 

stationary jobs may be initiated or terminated at arbitrary 

time instances.  

The system is idle 

(Job combination   is 

running) 

A job reconfiguration is requested, i.e. a job 

kJ ,  1,...,k n  is activated 

Download the schedule for 

the Current Set of Jobs 

 CSJ kJ  

Run the system for the Current 

Set of Jobs CSJ  until a job 

reconfiguration request 

Create and store schedules for all  

possible sets of jobs  CSJ lJ  and 

 CSJ tJ  ( tJ CSJ ), 

 , 1,...,l t n  that may occure after 

Current Set of Jobs CSJ.  

Schedules for all n 

individual jobs kJ , 

1,...,k n  are predefined 

at compile time. 

A job reconfiguration is requested, i.e. a job 

lJ ,  1,...,l n  is activated or a job tJ , 

 1,...,t n  is terminated. 

Form (monitor) the new Current Set of 

Jobs:  CSJ=CSJ lJ  or 

 CSJ=CSJ tJ  

Download the schedule for 

the Current Set of Jobs 

 CSJ kJ  
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 Typical piece-wise stationary application is Software 

Defined Radio (SDR) systems where each radio standard is 

more or less a stationary job with a fixed sequence of tasks 

having predictable worst-case execution times but every 

radio may turn On/Off, or change its mode at an arbitrary 

time instance.  

 In the next section we propose new approach to 

scheduler design timing for piece-wise stationary systems. In 

the proposed approach during each established stationary 

state of the system schedules are created for all possible t 

which the system may arrive next.  

 

3. PREDICTIVE SCHEDULING 

 
The proposed predictive scheduling method for “piece-wise 

stationary systems” may be described using the block-

diagram presented on Fig. 2.   

Suppose the system is piece-wise stationary and is 

meant to support a set of jobs 1,..., nJ J . That is, each job 

kJ , 1,...,k n  is a stationary job which may externally be 

requested to start or to terminate at an arbitrary 

unpredictable time instance. At compile time only schedules 

for all individual jobs 
kJ , 1,...,k n  are created and are 

stored in a devoted memory space in the system. Any valid 

scheduling algorithm may be used to create the actual 

schedules. In an exemplary embodiment this may be the 

algorithm described in [7]. When the system is switch on 

due to a request to start a job (say, kJ ), the corresponding 

stored schedule is used and the platform executes that job 

kJ . At this moment the Current Set of Jobs (CSJ) is 

 kCSJ J . Later the CSJ is dynamically changed during 

operation of the system. Every time when CSJ is changed, 

new schedules for all possible sets of jobs that may occur 

after the CSJ are created. Creation of schedules may be 

considered as one of the jobs from the set of all supported 

jobs 1,..., nJ J . That is, schedules for  lJCSJ , and 

 tJCSJ  ( CSJtJ ),  ntl ,...,1,   that may occur after 

the CSJ are created (note that this way several instances of 

the same job are allowed, in the case that letting only one 

instance of each job (as in SDR) makes sense, we should 

restrict CSJlJ ). Again, any valid scheduling algorithm, 

for example the one described in [7], may be used to create 

the actual schedules. However, the schedules may then be 

optimized using one or another optimization technique. 

Created schedules are stored into the devoted memory space. 

Note that the maximum number of schedules that need be 

stored is n2 , which is significantly far less than 
n22 , the 

number of schedules that need be stored in the case where 

all possible job combination transactions are scheduled at 

compile time. When all the (optimized) schedules are 

created and stored the system only runs the CSJ. As soon as 

a request for changing the CSJ is received the corresponding 

schedule is downloaded from the devoted memory location 

and the system runs the new CSJ. In an unlikely case that the 

CSJ change request is received earlier than all the schedules 

are created the scheduler terminates creation of all possible 

schedules for  lJCSJ , and  tJCSJ  ( CSJtJ ), 

 ntl ,...,1,   but only creates or downloads the created 

schedule for the requested new CSJ.  

In the proposed approach, the scheduling overhead 

is minimal because the schedules need not be created at run-

time as well as because the real-time constraints on creating 

schedules is significantly relaxed and more sophisticated 

scheduling policies and optimization techniques may be 

utilized .  

 .  
 

4. DISCUSSION 

 

In Fig. 3 efficiencies of different scheduling policies 

classified according to relative time (either run-time or 

compile time) of performing the three main scheduling steps 

are summarized similarly as it was done in [6].  

 The efficiency in this figure is understood as the 

generality of the scheduling policy vs. the run-time overhead 

of that policy. It can be seen that the overhead is smaller for 

more static schedulers. This means that for a given 

application it is advantageous to use as more static 

scheduling policy as is possible for that application. 

Unfortunately, the applicability area (generality) of static 

schedulers is rather limited.  

For example, an SDR system can only be scheduled using 

quasi-static or more dynamic scheduling approaches [7], 

which, however, require rather significant run-time 

overhead. In addition, only very simple scheduling 

algorithms may be used due to very tight real-time 

constraints on schedule creation.    

 In Fig. 3, also the proposed predictive scheduling 

method is positioned. Since the schedules for next sets of 

jobs are created in parallel with executing current set of 

jobs, the proposed method implies very low run-.time 

overhead, comparable with that of fully static scheduling 

policy. On the other hand, it has larger applicability area 

covering, for example the SDR application since the used 

schedules are dynamically changed as the system state is 

changed. The generality of the proposed method is at least 

comparable with that of quasi-static scheduling approach. In 

addition, since the real-time constraint in creating the 

schedules is significantly relaxed (compared to the case of 

quasi-static approach) rather sophisticated scheduling 

algorithms involving optimization techniques may be 

utilized.    
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Figure 3. Efficiency (run-time overhead vs. generality) of scheduling methods depending on the time of making decisions on 

three main scheduling steps. 
 

Therefore, the proposed predictive scheduling method 

provides high scheduling efficiency. The cost for achieving 

this efficiency is a devoted memory space where the 

schedules are to be stored and, optionally a dedicated small 

functional unit or a share of the system’s CPU. However, 

these costs are rather small. 

 

 

4. CONCLUSION 

 

New predictive scheduling policy is proposed that 

dynamically creates static schedules every time when 

system’s steady state is changed. The proposed method suits 

well to SDR systems since it requires minimal overhead andf 

allows dynamic creation of optimized schedulers with 

respect to the history of system evolution.      
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