

PCET: A TOOL FOR RAPIDLY ESTIMATING STATISTICS OF WAVEFORM

COMPONENTS IMPLEMENTED ON DIGITAL SIGNAL PROCESSORS

James Neel (Cognitive Radio Technologies, LLC, Lynchburg, VA, USA;
james.neel@crtwireless.com); Shareef Sayed, Matthew Carrick, Carl Dietrich (Wireless

@ Virginia Tech, Blacksburg, VA USA); Jeffrey Reed (Wireless @ Virginia Tech &
Cognitive Radio Technologies, LLC)

ABSTRACT

The Processor Cycle Estimation Tool (PCET) is an
extensible open-source tool for rapidly estimating the
cycles, power, and memory requirements of waveform
components across disparate DSP architectures. This paper
reviews the methodologies employed in PCET and
compares estimated values with vendor-provided library
code and from measured implementations.

1. INTRODUCTION

Early in process of designing an SDR or porting waveforms
to new platforms, a systems analysis should be conducted
to:
• Identify candidate processing hardware solutions and/or

assess the feasibility of porting existing waveforms
onto a new platform

• Assess the size, weight, and power (SWAP) impact of
implementing the waveforms on the targeted hardware

• Predict the implementation impact of varying critical
component parameters (e.g., filter or FFT lengths, code
rates)

• Optimize the choice of processors (new design) or the
partitioning of existing waveforms across an existing
platform’s processors (porting), typically by
minimizing power, area, memory requirements, and
cost (perhaps with varying weights depending on the
application).

These analyses require estimates of the waveform’s
required cycles, execution time, power consumption, and
memory usage. However, making reasonably accurate
estimates of these parameters is generally a very time-
intensive process, a process which is made even more
complicated because:
• An SDR has to support numerous waveforms
• There is significant variation in processor architectures.
Unfortunately, existing methods to address these goals do

not provide the timeliness, accuracy, and extensibility we
would prefer. For example, since most applications for
which execution time and power consumption are primary
considerations generally utilize hand-coded assembly for

their most critical processes, the most accurate method
would be to write assembly for the waveform stack for each
of the considered processors, but this has prohibitive
engineering costs. High-level code (e.g., C-code) could be
written and compiled using each of the considered DSP’s
compilers. However, there is typically such a large variance
in performance between compiled code and hand-coded
assembly high-level C-code, this method is not generally a
satisfactory predictor. Others (e.g., BDTI) provide ratings of
processors and most chip vendors will provide profiled
libraries of waveform components, but these provide no
information if the waveform component of interest was not
profiled or rated. As most of the value in an SDR is, by
definition, in the software, SDR vendors frequently utilize
unique software components for which there is no freely
available third party profiling. Thus third-party profiling
will generally only have limited applicability.

What is needed is a relatively simply way to estimate the
required cycles, execution time, energy, program memory,
and data memory for arbitrary waveform component across
arbitrary DSP architectures. This solution should be:
• As accurate as possible so that meaningful engineering

design decisions can be made from the tool,
• Extensible so the tool can be expanded to encompass

later-developed waveforms and processors, and
• Reusable so development efforts applied to one

analysis can be readily applied to another with minimal
impact to the user.

Building upon the formal methodology presented in [1],
the Processor Cycle Estimation Tool (PCET) provides a
reasonably accurate, extensible, and reusable open-source
solution to the problems faced in an SDR systems analysis.
This paper briefly describes the estimation methods used in
PCET in Section 2, the software architecture in Section 3,
and the results of some experiments where we compared the
values predicted by PCET against those reported by vendors
and those we measured ourselves in Section 4.

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

2. PCET METHODOLOGIES

2.1 Methodology Overview
PCET builds upon work performed in 2005 to estimate
cycles and execution time for specific components on
specific processors. The methodology documented in [1]
can be visualized as shown in Figure 1 where two different
paths are taken to estimate cycles. In one path (in the
middle), existing profiled code libraries are used to estimate
cycles. While using previously profiled measurements of
vendor-supplied code will give the most accurate estimates,
the applicability of this path is frequently limited.

Figure 1: Cycle Estimation Methodology of [1]

So the other path attempts to create parameterized
implementation equations that describe the resources used
when a component is implemented on a specific processor.
This begins with an initial operations estimated made by
describing the waveform component in pseudo-code
intending to capture all relevant operations, including
memory accesses, and loop control operations. The total
number of operations indicated by the pseudo-code are then
tabulated and parameterized (e.g., in terms of block size,
radix, or constraint length) to give a raw estimate of the
total operations required to support the waveform
component. Loosely, these parameterizations are the lengths
of the various loops in the code.

Operations related to loop control and other specialized
subprocesses are then noted. For a processor that can
implement only a single operation at a time, the cycle
estimate for a waveform component would simply be the
operations estimate. However, most processors include
extra circuitry for simultaneously implementing multiple
operations. To estimate the cycles a processor uses to
implement a particular waveform component, the method
subtracts the operations performed in specialized circuitry
indicated by the processor’s architecture from the operation
estimate and adjusts the estimate for architectures that
support single-instruction-multiple-data (SIMD) and
superscalar instructions, e.g., Very-Long-Instruction-Word
(VLIW).

PCET automates much of this process for cycle
estimation and then derives the remaining parameters as
follows.
• Execution time is calculated as estimated cycles divided

by the DSP clock rate.
• Data memory is calculated by counting the number of

calls to data memory prior to applying modifiers.
• Program memory is calculated by repeating the cycle

calculation with all loop lengths to 1 without
considering the effect of SIMD or VLIW.

• Energy consumption is calculated as Peak DSP power
consumption * Execution Time. Note that this is a
pessimistic estimate but would be in line with an
assumption of hand-coded assembly attempting to
minimize processing time (which is therefore
leveraging as many resources as possible).

While it is expected that most of the estimations
performed by PCET will utilize the second path, by
including options for using measured code, PCET can
leverage cycle-accurate estimates when available thereby
enhancing the accuracy of estimations.

2.2 DSP and Component Characterization
To automatically generate parameterized equations that
describe the cycles a component will consume on a DSP,
both the DSP and the component must be characterized. To
characterize a DSP, the DSP’s datasheet and instruction set
should be studied to identify the following:

1. Peak clock rate
2. Peak power consumption
3. Native bit-field width
4. (For VLIW calculations) Total number of unique

instructions that can be completed in one cycle
5. (For VLIW calculations) Total number of memory,

arithmetic, and multiplication instructions that can be
completed in one cycle (note that the sum of these will
sometimes exceed the value found in 4.)

6. (For SIMD calculations) Maximum number of data
words to which an instruction can be applied.

7. Any specialized instructions for which two or more
“basic” operations are completed in a single cycle (e.g.,
a MAC or zero-overhead).

8. Addressing modes, number representation formats
 Characterizing a component requires a more creative
process. First, the component should be expressed in a
pseudo-assembly style that captures every operation
required to implement a component on the least capable
DSP known at the time. Second, any DSP characteristics
assumed to exist when writing the pseudo-code such as
minimum bit-field width (for fixed point components),
addressing modes (e.g., circular or bit-reversed), or other
number formats (e.g., rounding modes) should be
documented. Third, any parameterizable aspects of the
pseudo-code length (typically loop lengths) should be noted.

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

Fourth, each line should be numbered, with a unique
numbering style applied to each loop. Using this numbering,
expressions should be written that express the number of
data memory operations, the number of multiplications, and
the number of arithmetic operations. Then the pseudo-code
is reviewed to identify if / where previously characterize
specialized operations apply (see DSP characterization step
6). This allows us to define an expression for the number
of operations that should be subtracted by PCET from the
total when a DSP with that specialized operator is targeted.
Because some specialized operations will target the same
line, these “synergistic” effects need to be undone. So by
reviewing the line numbers where these duplicated
eliminations occur, additional expressions to add back in the
doubly (or triply) eliminated operations are written. To aid
the VLIW estimation routine in PCET, the type of operation
(e.g., data memory multiplications, or arithmetic) in each
equation should be noted. The VLIW and SIMD methods
used by PCET are documented in [2], but their
implementation is not important to the user’s DSP and
component characterization process. Finally, if the analyst
knows of any previously profiled code of the component on
a particular DSP, those profiled expressions for cycles,
program memory and data memory should be included.

2.3 Example Characterization
The following gives an example of a characterization of a
FIR filter of arbitrary length which calculates outputs on a a
sample-by-sample basis where the samples and coefficients
are real-valued. The component characterization begins by
writing the pseudo-code shown in Figure 2. Note that this
implementation assumes the existence of a circular
addressing mode and that the parameterizable aspect of this
code is the filter length, which we will assign the variable
name ‘N’. Also note that to support the widest array of
DSP’s possible, the simplest loop control operation was
assumed in the pseudo-code wherein three instructions are
used: one to decrement the loop counter, one to compare the
loop counter with zero, and a conditional branch based on
the result of that comparison.

y=fir(coef, data, length, offset)

//Set circular buffer params
1 (instruction to store previous setting in local register)
2 (instruction to store buff length)
3 (instruction to turn on circ buff)
4 (instruction to set buffer length)

//Move input parameters to local registers
5 R1 = coef (address)
6 R2 = data (address)
7 R2 = data + offset // needed for circular buffering
8 R3 = length (actual #)

//zero accumulator (typically done by subtracting a register from itself)
9 acc = 0

//Note inherent assumption that length > 0
//Note for loops are implemented as conditional branches in assembly
L1 (loop label) R4 = *R1++ //postfix assumption
L2 R5 = *R2++ (
L3 R6 = R5 * R4
L4 acc = acc + R6
L5 R3 = R3 – 1
L6 flag = cmp(R3,0)
L7 if flag (R3==0), branch to loop

// Move result to output register
10 R_out = acc

// Restore stuff
11 (instruction to turn reset addressing mode)
12 (instruction to reset buffer length)
13 (instruction to branch back)

Figure 2: Pseudo-code for a process that implements a
sample-by-sample filter with an arbitrary number of real-

valued coefficients

 Next, the pseudo-code is numbered, where looped lines
are labeled as ‘L#’. Each of the operations were then
classified and combined to form the four equations shown
in Table 1 where the total equation is strictly not necessary,
but is useful for bookkeeping.

Table 1: Raw Operations Equation
Class Equation
Total 13+ 7 * N
Memory 2*N
Multiplication N
ALU 4*N + 13

 Then the known specialized instructions are reviewed,
and the lines where they apply are noted as well as what
kind of operation is being targeted. These are summarized
in Table 2 where BDEC is branch and decrement, BPOS is
a branch if positive, ZOL is zero-overhead loop (called
block repeat on other processors), MEM2 represent double
wide memory loads, and NOREG is used to model C54
behavior wherein local registers are eschewed in favor of
direct data memory accesses (this has the effect of slowing
the peak clock rate achievable by the processor).

Table 2: Impact of Specialized Instructions

Instruction Impact
Modifier
Equation

BDEC L5, L6 eliminated (ALU) -2*N
BPOS L6 eliminated (ALU) – N

ZOL 1 cycle to set register, L5, L6, L7
eliminated

(ALU) 1 – 3*N

MAC L4 eliminated (ALU) -N
MEM2 MEM cut in half (MEM) –(2*N)/2
MEM4 MEM cut in fourth (MEM) -3*(2*N)/4

NOREG MEM eliminated (MEM) –(2*N)

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

 As several of these modifiers, target the same line, these
synergistic effects have to be undone so that a line is only
removed from consideration once. Equations relating these
are shown in Table 3.
Table 3: Synergistic Modifiers for Real FIR Mapping
Modifiers Impact Modifier Equation

BDEC, ZOL L5,L6 added back in (ALU) target+2*N
BPOS, BDEC L6 added back in (ALU) target+N
BPOS, ZOL L6 added back in (ALU) target+N
BPOS, BDEC,
ZOL L6 eliminated (again) (ALU) target – N

MEM2,
NOREG MEM2 effect undone (MEM) target + (2*N)/2

MEM4,
NOREG MEM4 effect undone (MEM) target + 3*(2*N)/4

3. TOOL DESCRIPTION

3.1 Software Overview
As conceptually illustrated in Figure 3, PCET is
implemented as four primary components.

1. A collection of DSP and component characterization
files.

2. A GUI to manage the component and DSP
characterization files and to generate parameterization
files. The parameterization files are used to specify
particular values to substitute into the component
characterization equations, e.g., the filter length in the
example in Section 2. The GUI also provides a
mechanism for saving and loading results and analysis
configurations.

3. The computational engine which generates estimates of
cycle, time, energy, and memory values for
parameterized combinations of DSPs and components

4. A results window for tabulating the results and flagging
any mappings that exceed specified limits (e.g., taking
too long to execute).

3.2 Key Tool Features
The GUI is designed such that any DSP or component
characterization files placed in the proper directories are
automatically detected at initialization and included in the
set of available characterizations. Additionally, the engine
maintains no internal characterization information beyond
the input files given to it. These features along with light
characterization file error trapping enhance the extensibility
of PCET and allow new characterization files to be written
without knowledge of the underlying code structure.

While a highly extensible solution, the initial PCET
release also includes a significant number of
characterizations. This includes 20 different families of
processors drawn from TI, Analog Devices, ARM, Intel,
PowerPC, and Freescale and 24 components which
implement filters, multi-rate processes, synchronization,
error correction, transcendental number generation, FFTs,
digital modulation and demodulation, and analog
modulation and demodulation.

To help designers consider tradeoffs, multiple copies of
the same component can be selected and assigned different
parameters to allow for sensitivity analysis (e.g., impact of
traceback length on run-time).

 Figure 3: Conceptual operation of PCET

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

4. VALIDATION
In an effort to validate the estimations of PCET, we
compared estimated values against vendor-reported
measurements and measurements performed at Virginia
Tech.

5.1. Library Validation
We reviewed vendor provided code libraries for
components whose assumptions most closely matched the
assumptions used in creating the component
characterization files. We judged the assumptions used in
the real filter (sample-by-sample, arbitrary filter lengths),
the complex filter (sample-by-sample, arbitrary filter
lengths), the complex FFT (radix-2 using precomputed
twiddle-factors), and the real LMS (symbol-by-symbol filter
with weight update, but no error calculation) of the library
code used by the TMS320VC5502 [3], TMS320VC5416
[4], and the TMS3206205 [5] to be reasonable (though
necessarily imperfect) matches to the assumptions used in
the PCET component characterizations. The following
reports the results of the comparisons of PCET estimations
against the equations supplied with vendor library code with
the additional caveat that library cycles needed for more
generalized overhead (e.g., stack management) was ignored
as it was not modeled in the component characterizations.
 As shown in Table 4, real filters were varied for filter
lengths 15, 31, 63, and 127. The C54 (fir) and C55 (fir2)
grew at exactly the same rate which implies that the code
kernels agree perfectly. The C62 (fir_gen) grew at
approximately twice the rate which implies that the library
code is not making full use of the dual multipliers.
 As shown in Table 5, complex filters were varied for filter
lengths 15, 31, 63, and 127. Only the C54 (cfir) had library
code available. The C54 library code required
approximately twice as many cycles as the PCET estimate.
 As shown in Table 6 Real LMS Filters were varied for
lengths 7, 15, and 31. Only the C54 (dlms) had library code
available. The C54 library code required only differed by
one cycle from the PCET estimate.
 As shown in Table 7, complex FFTs were varied for block
lengths 32, 64, 128, and 256. Only the C54 (cfft) and C55
(cfft) had library code available. The C54 library code
required a similar number of cycles as estimated by PCET
(remarkable given the complexity) while the C55 differed
significantly. However, the C55 differs greatly. Oddly, the
C55 library code required significantly more cycles than the
C54 code, which is surprising as the C55 is the more
sophisticated processor. Likely, there are hidden switches in
the library code which are adding significantly to the code
estimates. Note that the C62 did not support the bit-reverse
addressing assumed in the component characterization, so
no estimates were made.

Table 4: Real Filter Cycles Data

DSP Method 15 31 63 127
VC5502 Library 11 19 35 67

fir2 PCET 21 29 45 77
VC5416-160 Library 23 39 71 135

fir PCET 29 45 77 141
6205-200 Library 40 72 136 264
fir_gen PCET 12 24 48 96

Table 5: Complex Filter Cycles Data

DSP Method 15 31 63 127
VC5502 Library N/A N/A N/A N/A

N/A PCET 55 87 151 279
VC5416-160 Library 133 261 517 1029

cfir PCET 85 149 277 533
6205-200 Library N/A N/A N/A N/A

N/A PCET 30 59 118 235

Table 6: Real LMS Cycles Data

DSP Method 7 15 31
VC5502 Library N/A N/A N/A

N/A PCET 21 29 45
VC5416-160 Library 28 44 76

dlms PCET 29 45 77
6205-200 Library N/A N/A N/A

N/A PCET 13 26 53

Table 7: FFT Cycles Data

DSP Method 32 64 256 1024
VC5502 Library 517 1036 4858 23848

cfft PCET 406 730 2594 9930
VC5416-160 Library 390 806 3302 13286

cfft PCET 431 773 2737 10461
6205-200 Library N/A N/A N/A N/A

N/A PCET N/A N/A N/A N/A

5.2 An Independent Validation Study
Researchers at Virginia Tech recently compared the
estimates provided by PCET against profiled measurements
from the PowerPC 405D5. As the PowerPC 405D5 was not
one of the initially characterized DSPs, this necessitated
writing a new DSP characterization file. Efforts were made
to translate the documented module assembly for selected
component characterizations [2] into C which was then
compiled and executed on the PowerPC 405D5. To measure
the length of run time on the 405D5, the processor's 64-bit
timer register is accessed before and after running each
component 500 times and storing the difference. This
allowed for finer grained measurements of the estimated
execution time and measurements for components that
require less than 1 us to execute. This was performed for 5
components (real filter, complex filter, LMSReal, Taylor,
and CORDIC) and the results are shown below. Because
this is compiled C code, it would be expected that PCET
(which is modeling aggressive hand-coded assembly) would

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

provide smaller estimates. Largely, this is what happened,
with significant variance between surveyed processes.
 Of more immediate relevance, this exercise demonstrated
the ease of third-party development of characterization files
for PCET as this effort was performed entirely
independently of the original PCET developers in the
manner of two weeks with approximately 2 days for
characterization of an unfamiliar architecture. Note that
once the PowerPC characterization file was complete, the
implementation statistics for all 24 component files could be
immediately estimated.

Table 8: PCET estimates and profiled measurements from
compiled C code for selected components on the PowerPC

405D5

Component Length
PCET
Cycles

PCET
Time

Profiled
Time

RealFilter 20 N/A N/A 0.41 us
ComplexFilter 10 N/A N/A 0.41 us

LMSReal 10 163 0.54 us 8.28 us
Taylor 10 86 0.29 us 0.31 us

CORDIC 14 289 0.96 us 0.21 us

6. CONCLUSIONS

PCET is an open-source tool available for download from
CRT [2] as an independent software package under a
Mozilla Public License and from Virginia Tech as an
OSSIE tool. Thus other users can extend PCET to new
applications, fix bugs, or simply add new component and
DSP characterizations. Particularly, as more
characterizations are created, the PCET approach of
automatically estimating cycles, execution time, energy, and
memory will become increasingly valuable as each new
characterization can leverage existing characterizations.
This effect was demonstrated when Virginia Tech coded a
new DSP characterization that could immediately leverage
all 24 pervious component characterizations. In this way,
we believe PCET will radically improve SDR systems
engineering by allowing for more rapid analysis of porting
and implementation feasibility and of parameter
sensitivities.
 While intended as a design tool for human radio
designers, PCET could also act as a key internal model for
cognitive radios to estimate the impact of various design
decisions on internal radio resources. The rapidity by which
PCET makes its estimations of power, cycles, memory, and
implementation feasibility (on the order of microseconds on
a typical GPP) implies that the addition of this process

would have little impact on radio operation while providing
a significant new feature.
 In general, PCET performs quite well when the
assumptions of characterized component closely match the
assumptions of the implemented component. Though not
revealed in these validation studies, it is believed that some
implicit assumptions in the PCET cycle estimation
methodology will lead to underestimates of required cycles
for RISC processors where instruction executions times
depend on what other instructions are vying for processor
resources. In contrast, it is also believed that as the number
of parallelizable options increase on a processor, the
predefined VLIW and SIMD algorithms will overestimate
the required number of cycles.
 Beyond the initial PCET release, several immediate
avenues for improvement are available including:
• automating the generation of component

characterization files from a high level language
description or generating DSP characterization files
from datasheets

• augmenting the GUI to support a more SDR-systems-
engineer-friendly block diagram layout that allows
definition of timing domains and possibly processor
boundaries

• Support for FPGAs
• Explicit support for multi-core DSPs.
• Integration into other packages such as Simulink or

another simulation package so that both resource and
performance statistics could be gathered in one package

• A RISC-specific estimation model to address expected
shortcomings in the engine.

7. ACKNOWELDGMENTS

This work was sponsored by CERDEC through Naval
Surface Warfare contract N00178-98-D-3017-0044.

8. REFERENCES
[1] J. Neel, P. Robert, J. Reed, “A Formal Methodology for

Estimating the Feasible Processor Solution Space for a
Software Radio,” SDR Forum Technical Conference, 2005.

[2] PCET Resource Webpage: www.crtwireless.com/PCET.html

[3] TMS320C55x DSP Library Programmer’s Reference,
SPRU422I, August 2006.

[4] TMS320C54x DSP Library Programmer’s Reference,
SPRU518d October 2004.

[5] TMS320C62x DSP Library Programmer’s Reference,
SPRU402B, October 2003.

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

http://www.crtwireless.com/PCET.html

	Home
	Papers By Alpha
	Papers By Session

