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ABSTRACT 
 
The Processor Cycle Estimation Tool (PCET) is an 
extensible open-source tool for rapidly estimating the 
cycles, power, and memory requirements of waveform 
components across disparate DSP architectures. This paper 
reviews the methodologies employed in PCET and 
compares estimated values with vendor-provided library 
code and from measured implementations. 
 

1. INTRODUCTION 
 
Early in process of designing an SDR or porting waveforms 
to new platforms, a systems analysis should be conducted 
to:  
• Identify candidate processing hardware solutions and/or 

assess the feasibility of porting existing waveforms 
onto a new platform 

• Assess the size, weight, and power (SWAP) impact of 
implementing the waveforms on the targeted hardware 

• Predict the implementation impact of varying critical 
component parameters (e.g., filter or FFT lengths, code 
rates) 

• Optimize the choice of processors (new design) or the 
partitioning of existing waveforms across an existing 
platform’s processors (porting), typically by 
minimizing power, area, memory requirements, and 
cost (perhaps with varying weights depending on the 
application). 

These analyses require estimates of the waveform’s 
required cycles, execution time, power consumption, and 
memory usage. However, making reasonably accurate 
estimates of these parameters is generally a very time-
intensive process, a process which is made even more 
complicated because: 
• An SDR has to support numerous waveforms 
• There is significant variation in processor architectures. 
Unfortunately, existing methods to address these goals do 

not provide the timeliness, accuracy, and extensibility we 
would prefer. For example, since most applications for 
which execution time and power consumption are primary 
considerations generally utilize hand-coded assembly for 

their most critical processes, the most accurate method 
would be to write assembly for the waveform stack for each 
of the considered processors, but this has prohibitive 
engineering costs. High-level code (e.g., C-code) could be 
written and compiled using each of the considered DSP’s 
compilers. However, there is typically such a large variance 
in performance between compiled code and hand-coded 
assembly high-level C-code, this method is not generally a 
satisfactory predictor. Others (e.g., BDTI) provide ratings of 
processors and most chip vendors will provide profiled 
libraries of waveform components, but these provide no 
information if the waveform component of interest was not 
profiled or rated. As most of the value in an SDR is, by 
definition, in the software, SDR vendors frequently utilize 
unique software components for which there is no freely 
available third party profiling. Thus third-party profiling 
will generally only have limited applicability. 

What is needed is a relatively simply way to estimate the 
required cycles, execution time, energy, program memory, 
and data memory for arbitrary waveform component across 
arbitrary DSP architectures. This solution should be:  
• As accurate as possible so that meaningful engineering 

design decisions can be made from the tool,  
• Extensible so the tool can be expanded to encompass 

later-developed waveforms and processors, and  
• Reusable so development efforts applied to one 

analysis can be readily applied to another with minimal 
impact to the user. 

Building upon the formal methodology presented in [1], 
the Processor Cycle Estimation Tool (PCET) provides a 
reasonably accurate, extensible, and reusable open-source 
solution to the problems faced in an SDR systems analysis. 
This paper briefly describes the estimation methods used in 
PCET in Section 2, the software architecture in Section 3, 
and the results of some experiments where we compared the 
values predicted by PCET against those reported by vendors 
and those we measured ourselves in Section 4. 
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2. PCET METHODOLOGIES 
 
2.1 Methodology Overview 
PCET builds upon work performed in 2005 to estimate 
cycles and execution time for specific components on 
specific processors. The methodology documented in [1] 
can be visualized as shown in Figure 1 where two different 
paths are taken to estimate cycles. In one path (in the 
middle), existing profiled code libraries are used to estimate 
cycles. While using previously profiled measurements of 
vendor-supplied code will give the most accurate estimates, 
the applicability of this path is frequently limited. 
 

 
Figure 1: Cycle Estimation Methodology of [1] 

So the other path attempts to create parameterized 
implementation equations that describe the resources used 
when a component is implemented on a specific processor. 
This begins with an initial operations estimated made by 
describing the waveform component in pseudo-code 
intending to capture all relevant operations, including 
memory accesses, and loop control operations. The total 
number of operations indicated by the pseudo-code are then 
tabulated and parameterized (e.g., in terms of block size, 
radix, or constraint length) to give a raw estimate of the 
total operations required to support the waveform 
component. Loosely, these parameterizations are the lengths 
of the various loops in the code. 

Operations related to loop control and other specialized 
subprocesses are then noted. For a processor that can 
implement only a single operation at a time, the cycle 
estimate for a waveform component would simply be the 
operations estimate. However, most processors include 
extra circuitry for simultaneously implementing multiple 
operations. To estimate the cycles a processor uses to 
implement a particular waveform component, the method 
subtracts the operations performed in specialized circuitry 
indicated by the processor’s architecture from the operation 
estimate and adjusts the estimate for architectures that 
support single-instruction-multiple-data (SIMD) and 
superscalar instructions, e.g., Very-Long-Instruction-Word 
(VLIW).  

PCET automates much of this process for cycle 
estimation and then derives the remaining parameters as 
follows.  
• Execution time is calculated as estimated cycles divided 

by the DSP clock rate.  
• Data memory is calculated by counting the number of 

calls to data memory prior to applying modifiers. 
• Program memory is calculated by repeating the cycle 

calculation with all loop lengths to 1 without 
considering the effect of SIMD or VLIW. 

• Energy consumption is calculated as Peak DSP power 
consumption * Execution Time. Note that this is a 
pessimistic estimate but would be in line with an 
assumption of hand-coded assembly attempting to 
minimize processing time (which is therefore 
leveraging as many resources as possible). 

While it is expected that most of the estimations 
performed by PCET will utilize the second path, by 
including options for using measured code, PCET can 
leverage cycle-accurate estimates when available thereby 
enhancing the accuracy of estimations. 
 
2.2 DSP and Component Characterization  
To automatically generate parameterized equations that 
describe the cycles a component will consume on a DSP, 
both the DSP and the component must be characterized. To 
characterize a DSP, the DSP’s datasheet and instruction set 
should be studied to identify the following: 

1. Peak clock rate 
2. Peak power consumption 
3. Native bit-field width 
4. (For VLIW calculations) Total number of unique 

instructions that can be completed in one cycle 
5. (For VLIW calculations) Total number of memory, 

arithmetic, and multiplication instructions that can be 
completed in one cycle (note that the sum of these will 
sometimes exceed the value found in 4.)  

6. (For SIMD calculations) Maximum number of data 
words to which an instruction can be applied. 

7. Any specialized instructions for which two or more 
“basic” operations are completed in a single cycle (e.g., 
a MAC or zero-overhead). 

8. Addressing modes, number representation formats 
 Characterizing a component requires a more creative 
process. First, the component should be expressed in a 
pseudo-assembly style that captures every operation 
required to implement a component on the least capable 
DSP known at the time. Second, any DSP characteristics 
assumed to exist when writing the pseudo-code such as 
minimum bit-field width (for fixed point components), 
addressing modes (e.g., circular or bit-reversed), or other 
number formats (e.g., rounding modes) should be 
documented. Third, any parameterizable aspects of the 
pseudo-code length (typically loop lengths) should be noted. 
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Fourth, each line should be numbered, with a unique 
numbering style applied to each loop. Using this numbering, 
expressions should be written that express the number of 
data memory operations, the number of multiplications, and 
the number of arithmetic operations. Then the pseudo-code 
is reviewed to identify if / where previously characterize 
specialized operations apply (see DSP characterization step 
# 6). This allows us to define an expression for the number 
of operations that should be subtracted by PCET from the 
total when a DSP with that specialized operator is targeted. 
Because some specialized operations will target the same 
line, these “synergistic” effects need to be undone. So by 
reviewing the line numbers where these duplicated 
eliminations occur, additional expressions to add back in the 
doubly (or triply) eliminated operations are written. To aid 
the VLIW estimation routine in PCET, the type of operation 
(e.g., data memory multiplications, or arithmetic) in each 
equation should be noted. The VLIW and SIMD methods 
used by PCET are documented in [2], but their 
implementation is not important to the user’s DSP and 
component characterization process. Finally, if the analyst 
knows of any previously profiled code of the component on 
a particular DSP, those profiled expressions for cycles, 
program memory and data memory should be included.  
 
2.3 Example Characterization  
The following gives an example of a characterization of a 
FIR filter of arbitrary length which calculates outputs on a a 
sample-by-sample basis where the samples and coefficients 
are real-valued. The component characterization begins by 
writing the pseudo-code shown in Figure 2. Note that this 
implementation assumes the existence of a circular 
addressing mode and that the parameterizable aspect of this 
code is the filter length, which we will assign the variable 
name ‘N’. Also note that to support the widest array of 
DSP’s possible, the simplest loop control operation was 
assumed in the pseudo-code wherein three instructions are 
used: one to decrement the loop counter, one to compare the 
loop counter with zero, and a conditional branch based on 
the result of that comparison.   
 
y=fir(coef, data, length, offset) 
 
//Set circular buffer params 
1 (instruction to store previous setting in local register) 
2 (instruction to store buff length) 
3 (instruction to turn on circ buff) 
4 (instruction to set buffer length) 
 
//Move input parameters to local registers 
5 R1 = coef (address) 
6 R2 = data (address) 
7 R2 = data + offset // needed for circular buffering 
8 R3 = length (actual #) 
 
//zero accumulator (typically done by subtracting a register from itself) 
9 acc = 0 

 
//Note inherent assumption that length > 0 
//Note for loops are implemented as conditional branches in assembly 
L1 (loop label) R4 = *R1++ //postfix assumption 
L2 R5 = *R2++ ( 
L3 R6 = R5 * R4 
L4 acc = acc + R6 
L5 R3 = R3 – 1 
L6 flag = cmp(R3,0) 
L7 if flag (R3==0), branch to loop 
 
// Move result to output register 
10 R_out = acc 
 
// Restore stuff 
11 (instruction to turn reset addressing mode) 
12 (instruction to reset buffer length) 
13 (instruction to branch back) 

Figure 2: Pseudo-code for a process that implements a 
sample-by-sample filter with an arbitrary number of real-

valued coefficients 

 Next, the pseudo-code is numbered, where looped lines 
are labeled as ‘L#’. Each of the operations were then 
classified and combined to form the four equations shown 
in Table 1 where the total equation is strictly not necessary, 
but is useful for bookkeeping.  

Table 1: Raw Operations Equation 
Class Equation 
Total 13+ 7 * N 
Memory 2*N 
Multiplication N 
ALU 4*N + 13 

 
 Then the known specialized instructions are reviewed, 
and the lines where they apply are noted as well as what 
kind of operation is being targeted. These are summarized 
in Table 2 where BDEC is branch and decrement, BPOS is 
a branch if positive, ZOL is zero-overhead loop (called 
block repeat on other processors), MEM2 represent double 
wide memory loads, and NOREG is used to model C54 
behavior wherein local registers are eschewed in favor of 
direct data memory accesses (this has the effect of slowing 
the peak clock rate achievable by the processor).  
 

Table 2: Impact of Specialized Instructions 

Instruction Impact 
Modifier 
Equation 

BDEC L5, L6 eliminated (ALU)  -2*N 
BPOS L6 eliminated (ALU) – N 

ZOL 1 cycle to set register, L5, L6, L7 
eliminated 

(ALU) 1 – 3*N 

MAC L4 eliminated (ALU)  -N 
MEM2 MEM cut in half (MEM) –(2*N)/2 
MEM4 MEM cut in fourth (MEM) -3*(2*N)/4 

NOREG MEM eliminated (MEM) –(2*N) 
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 As several of these modifiers, target the same line, these 
synergistic effects have to be undone so that a line is only 
removed from consideration once. Equations relating these 
are shown in Table 3. 
Table 3: Synergistic Modifiers for Real FIR Mapping 
Modifiers Impact Modifier Equation 

BDEC, ZOL L5,L6 added back in  (ALU) target+2*N 
BPOS, BDEC L6 added back in (ALU) target+N 
BPOS, ZOL L6 added back in (ALU) target+N 
BPOS, BDEC, 
ZOL L6 eliminated (again) (ALU) target – N 

MEM2, 
NOREG MEM2 effect undone  (MEM) target + (2*N)/2 

MEM4, 
NOREG MEM4 effect undone (MEM)  target + 3*(2*N)/4 

 
3. TOOL DESCRIPTION 

 
3.1 Software Overview 
As conceptually illustrated in Figure 3, PCET is 
implemented as four primary components. 

1. A collection of DSP and component characterization 
files. 

2. A GUI to manage the component and DSP 
characterization files and to generate parameterization 
files. The parameterization files are used to specify 
particular values to substitute into the component 
characterization equations, e.g., the filter length in the 
example in Section 2. The GUI also provides a 
mechanism for saving and loading results and analysis 
configurations. 

3. The computational engine which generates estimates of 
cycle, time, energy, and memory values for 
parameterized combinations of DSPs and components 

4. A results window for tabulating the results and flagging 
any mappings that exceed specified limits (e.g., taking 
too long to execute). 

 
3.2 Key Tool Features 
The GUI is designed such that any DSP or component 
characterization files placed in the proper directories are 
automatically detected at initialization and included in the 
set of available characterizations. Additionally, the engine 
maintains no internal characterization information beyond 
the input files given to it. These features along with light 
characterization file error trapping enhance the extensibility 
of PCET and allow new characterization files to be written 
without knowledge of the underlying code structure.  

While a highly extensible solution, the initial PCET 
release also includes a significant number of 
characterizations. This includes 20 different families of 
processors drawn from TI, Analog Devices, ARM, Intel, 
PowerPC, and Freescale and 24 components which 
implement filters, multi-rate processes, synchronization, 
error correction, transcendental number generation, FFTs, 
digital modulation and demodulation, and analog 
modulation and demodulation. 

To help designers consider tradeoffs, multiple copies of 
the same component can be selected and assigned different 
parameters to allow for sensitivity analysis (e.g., impact of 
traceback length on run-time).  

 Figure 3:  Conceptual operation of PCET 
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4. VALIDATION 
In an effort to validate the estimations of PCET, we 
compared estimated values against vendor-reported 
measurements and measurements performed at Virginia 
Tech.  
 
5.1. Library Validation 
We reviewed vendor provided code libraries for 
components whose assumptions most closely matched the 
assumptions used in creating the component 
characterization files. We judged the assumptions used in 
the real filter (sample-by-sample, arbitrary filter lengths), 
the complex filter (sample-by-sample, arbitrary filter 
lengths), the complex FFT (radix-2 using precomputed 
twiddle-factors), and the real LMS (symbol-by-symbol filter 
with weight update, but no error calculation) of the library 
code used by the TMS320VC5502 [3], TMS320VC5416 
[4], and the TMS3206205 [5] to be reasonable (though 
necessarily imperfect) matches to the assumptions used in 
the PCET component characterizations. The following 
reports the results of the comparisons of PCET estimations 
against the equations supplied with vendor library code with 
the additional caveat that library cycles needed for more 
generalized overhead (e.g., stack management) was ignored 
as it was not modeled in the component characterizations. 
 As shown in Table 4, real filters were varied for filter 
lengths 15, 31, 63, and 127. The C54 (fir) and C55 (fir2) 
grew at exactly the same rate which implies that the code 
kernels agree perfectly. The C62 (fir_gen) grew at 
approximately twice the rate which implies that the library 
code is not making full use of the dual multipliers.  
 As shown in Table 5, complex filters were varied for filter 
lengths 15, 31, 63, and 127. Only the C54 (cfir) had library 
code available. The C54 library code required 
approximately twice as many cycles as the PCET estimate. 
 As shown in Table 6 Real LMS Filters were varied for 
lengths 7, 15,  and 31. Only the C54 (dlms) had library code 
available. The C54 library code required only differed by 
one cycle from the PCET estimate.  
  As shown in Table 7, complex FFTs were varied for block 
lengths 32, 64, 128, and 256. Only the C54 (cfft) and C55 
(cfft) had library code available. The C54 library code 
required a similar number of cycles as estimated by PCET 
(remarkable given the complexity) while the C55 differed 
significantly. However, the C55 differs greatly. Oddly, the 
C55 library code required significantly more cycles than the 
C54 code, which is surprising as the C55 is the more 
sophisticated processor. Likely, there are hidden switches in 
the library code which are adding significantly to the code 
estimates. Note that the C62 did not support the bit-reverse 
addressing assumed in the component characterization, so 
no estimates were made. 

Table 4: Real Filter Cycles Data 

DSP Method 15 31 63 127 
VC5502 Library 11 19 35 67 

fir2 PCET 21 29 45 77 
VC5416-160 Library 23 39 71 135 

fir PCET 29 45 77 141 
6205-200 Library 40 72 136 264 
fir_gen PCET 12 24 48 96 

Table 5: Complex Filter Cycles Data 

DSP Method 15 31 63 127 
VC5502 Library N/A N/A N/A N/A 

N/A PCET 55 87 151 279 
VC5416-160 Library 133 261 517 1029 

cfir PCET 85 149 277 533 
6205-200 Library N/A N/A N/A N/A 

N/A PCET 30 59 118 235 

Table 6: Real LMS Cycles Data 

DSP Method 7 15 31 
VC5502 Library N/A N/A N/A 

N/A PCET 21 29 45 
VC5416-160 Library 28 44 76 

dlms PCET 29 45 77 
6205-200 Library N/A N/A N/A 

N/A PCET 13 26 53 

Table 7: FFT Cycles Data 

DSP Method 32 64 256 1024 
VC5502 Library 517 1036 4858 23848 

cfft PCET 406 730 2594 9930 
VC5416-160 Library 390 806 3302 13286 

cfft PCET 431 773 2737 10461 
6205-200 Library N/A N/A N/A N/A 

N/A PCET N/A N/A N/A N/A 
 
5.2 An Independent Validation Study
Researchers at Virginia Tech recently compared the 
estimates provided by PCET against profiled measurements 
from the PowerPC 405D5. As the PowerPC 405D5 was not 
one of the initially characterized DSPs, this necessitated 
writing a new DSP characterization file. Efforts were made 
to translate the documented module assembly for selected 
component characterizations [2] into C which was then 
compiled and executed on the PowerPC 405D5. To measure 
the length of run time on the 405D5, the processor's 64-bit 
timer register is accessed before and after running each 
component 500 times and storing the difference. This 
allowed for finer grained measurements of the estimated 
execution time and measurements for components that 
require less than 1 us to execute. This was performed for 5 
components (real filter, complex filter, LMSReal, Taylor, 
and CORDIC) and the results are shown below. Because 
this is compiled C code, it would be expected that PCET 
(which is modeling aggressive hand-coded assembly) would 
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provide smaller estimates. Largely, this is what happened, 
with significant variance between surveyed processes.  
 Of more immediate relevance, this exercise demonstrated 
the ease of third-party development of characterization files 
for PCET as this effort was performed entirely 
independently of the original PCET developers in the 
manner of two weeks with approximately 2 days for 
characterization of an unfamiliar architecture. Note that 
once the PowerPC characterization file was complete, the 
implementation statistics for all 24 component files could be 
immediately estimated. 

Table 8: PCET estimates and profiled measurements from 
compiled C code for selected components on the PowerPC 

405D5 

Component Length 
PCET 
Cycles 

PCET 
Time 

Profiled 
Time 

RealFilter 20 N/A N/A 0.41 us 
ComplexFilter 10 N/A N/A 0.41 us 

LMSReal 10 163 0.54 us 8.28 us 
Taylor 10 86 0.29 us 0.31 us 

CORDIC 14 289 0.96 us 0.21 us 
 

6. CONCLUSIONS 
 
PCET is an open-source tool available for download from 
CRT [2] as an independent software package under a 
Mozilla Public License and from Virginia Tech as an 
OSSIE tool. Thus other users can extend PCET to new 
applications, fix bugs, or simply add new component and 
DSP characterizations. Particularly, as more 
characterizations are created, the PCET approach of 
automatically estimating cycles, execution time, energy, and 
memory will become increasingly valuable as each new 
characterization can leverage existing characterizations. 
This effect was demonstrated when Virginia Tech coded a 
new DSP characterization that could immediately leverage 
all 24 pervious component characterizations. In this way, 
we believe PCET will radically improve SDR systems 
engineering by allowing for more rapid analysis of porting 
and implementation feasibility and of parameter 
sensitivities. 
 While intended as a design tool for human radio 
designers, PCET could also act as a key internal model for 
cognitive radios to estimate the impact of various design 
decisions on internal radio resources. The rapidity by which 
PCET makes its estimations of power, cycles, memory, and 
implementation feasibility (on the order of microseconds on 
a typical GPP) implies that the addition of this process 

would have little impact on radio operation while providing 
a significant new feature.  
 In general, PCET performs quite well when the 
assumptions of characterized component closely match the 
assumptions of the implemented component. Though not 
revealed in these validation studies, it is believed that some 
implicit assumptions in the PCET cycle estimation 
methodology will lead to underestimates of required cycles 
for RISC processors where instruction executions times 
depend on what other instructions are vying for processor 
resources. In contrast, it is also believed that as the number 
of parallelizable options increase on a processor, the 
predefined VLIW and SIMD algorithms will overestimate 
the required number of cycles.  
 Beyond the initial PCET release, several immediate 
avenues for improvement are available including:  
• automating the generation of component 

characterization files from a high level language 
description or generating DSP characterization files 
from datasheets 

• augmenting the GUI to support a more SDR-systems- 
engineer-friendly block diagram layout that allows 
definition of timing domains and possibly processor 
boundaries 

• Support for FPGAs 
• Explicit support for multi-core DSPs.  
• Integration into other packages such as Simulink or 

another simulation package so  that both resource and 
performance statistics could be gathered in one package 

• A RISC-specific estimation model to address expected 
shortcomings in the engine. 
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