
DISTRIBUTED SDR APPLICATIONS FOR DISTANCE LEARNING

Carlos R. Aguayo Gonzalez (MPRG, Wireless@Virginia Tech, Blacksburg, VA, USA; caguayog@vt.edu);
Carl Dietrich (MPRG, Wireless@Virginia Tech, Blacksburg, VA, USA; cdietric@vt.edu); and

Jeffrey H. Reed (MPRG, Wireless@Virginia Tech, Blacksburg,VA, USA; reedjh@vt.edu).

ABSTRACT

Software-defined radio (SDR) has become a key technology
in the development of wireless communications systems
because of the flexibility it provides and its potential to
enable exciting applications such as cognitive radio (CR).
In order to maintain the innovation pace in this area, it
is necessary to train future generations of engineers in the
techniques, and crafts, of SDR development. This can only
be achieved by complementing theoretical coursework with
hands-on, practical labs, exposing engineering students to the
latest SDR standards and development practices. To facilitate
the acquisition of lab equipment for SDR training and reduce
its cost, we present a distributed platform that allows remote
users and distance learners to share key hardware resources,
allowing them to perform complete experiments at a fraction
of the cost.

This platform is based on OSSIE, an open-source im-
plementation of the Software Communications Architecture
(SCA) developed at Virginia Tech, and the Universal Soft-
ware Radio Peripheral (USRP), developed as part of the GNU
Radio project. In this approach, a computer with the USRP
hardware connected is made available for remote access over
the internet to students so they can use it to acquire real-
time, over-the-air data and feed it into their waveforms,
taking advantage of the inherent distributing capabilities of
the SCA. This way, experiments and labs can be performed
by a large group of students, local or remote, without the
need to provide each student with physical access to the RF
hardware, reducing costs and facilitating experiment setup.

In this paper, we describe the operation of the platform
and the logistics involved in its operation. An example
of the experiments that can be performed in this platform
is provided, along with initial performance and usability
evaluations.

1. INTRODUCTION

Software-defined radio (SDR) has become a key technology
in the development of wireless communications systems. This
is because of the flexibility it provides and its potential to
enable exciting technologies such as cognitive radio (CR).
In order to maintain the innovation pace in this area, it
is necessary to train future generations of engineers in the
techniques, and crafts, of SDR development. This can only
be achieved by complementing theoretical coursework with
hands-on, practical training, while exposing students to the
latest SDR standards and development practices. Unfor-
tunately, equipment procurement to provide such learning
environment can be expensive. In order to facilitate the

acquisition of lab equipment for SDR training and reduce
its cost, we present a distributed platform that allows remote
users and distance learners share key hardware resources,
allowing them to benefit from practical education at a fraction
of the cost.

SDR is a complex, multidisciplinary field. In oder to
provide students with the knowledge and skill required to
ultimately build an SDR, it is necessary to cover elements
from communications theory, software engineering, computer
engineering, etc. [1]. Students need to try and experience
first-hand the effects of real-world implementation of this
kind of communication systems.

Providing this type of education requires specialized equip-
ment. While SDR platforms come in all sizes, capacities, and
price points, even low-end platforms can get expensive when
considering procuring for a large class size. This may get
prohibitively expensive for institutions with limited budgets.
Such limitations require SDR instructors to acquire a small
set of critical hardware that is then shared by the students.
Instructors also have to decide if they will hand out the
platforms to the students or leave them in a specific location,
with the latter option usually preferred. While this is a viable
solution, it goes at expense of the students’ convenience,
who need to be physically present at that location at a
prescheduled time. Furthermore, both approaches severely
limit the ability of distance-learning students to participate
of the experiments and benefit from the hands-on approach.

It is the desirable to provide an environment where SDR
platforms can be shared among students in a remote way,
enabling distance learners to participate and increasing con-
venience for local students. This approach can make the best
possible use of the platforms such that a small number of
them can support a large number of students. Remote access
is convenient and reduces the need for strict scheduling.

In this paper we describe how to enhance SDR curricula
with hands-on training without incurring excessive costs,
by developing and deploying distributed applications using
OSSIE and the inherent distributed capabilities of the SCA.
This approach allows concurrent remote access to data cap-
tured by a USRP. We address and explain the technical and
management issues of adopting such an approach and present
the results of initial feasibility experiments involving the
deplyment of a simple AM receiver waveform.

2. ENABLING TECHNOLOGIES

SDR has captured the attention of researchers and developers
for quite a few years now. Significant technological advances
have taken place in SDR and supporting areas that have had

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

a great impact not only on SDR implementation, but also in
its education.

One of the simplest approaches to share hardware re-
sources and provide remote access to enhance distance learn-
ing, is to set up a remote computer that has Secure Shell
(SSH) access, which provides a secure channel to share data
between computers. This way, a single piece of hardware,
such as the USRP, can be accessed by multiple users without
requiring physical access to it, as shown in Figure 1. This
approach has many advantages such as ease of setup and low
cost. However, this approach only allows one user at a time
and data streams can be difficult to access for audio output
and debugging. While there are ways to workaround these
limitations, we will focus on other technologies that enable
distributed processing and better resource sharing.

Fig. 1. Remote access to SDR HW using SSH

2.1. The Software Communications Architecture

The Software Communications Architecture (SCA) is an
open architecture developed by the Joint Tactical Radio
System (JTRS) program of the US Department of Defense
(DoD). The SCA provides a framework for the design,
development, deployment, and management of SDR appli-
cations, or waveforms. It was designed for scalability and
waveform reuse, which is achieved by decoupling software
and hardware by establishing standard interfaces and a com-
mon operational environment (OE). The OE relies on COTS
components and well-known design patterns [2] to describe,
deploy, configure, and manage components and waveforms.

The OE includes interfaces to control individual waveform
components (the “Resource” interface), interact with physical
hardware (“Base Device Interfaces”), and manage and control
the radio domain (“Framework Control Interfaces”).

At the core of the SCA there is the assumption of a
modular, reconfigurable platform, which requires the use of
sophisticated middleware to deliver data and control infor-
mation. The SCA relies on the Common Object Request
Broker Architecture (CORBA) to provide this functionality.
We explain CORBA operation a little bit more in the next
section. For now, we need to point out that CORBA provides
the SCA with the ability to distribute applications seamlessly,
allowing components to be deployed on different processors,
boards, computers or networks and yet appear as if they were
local to everyone else in the application.

2.2. Common Object Request Broker Architecture

The SCA dictates the use of minimum-CORBA, as stan-
dardized by the Object Management Group (OMG) [3], to

Fig. 2. Communication Between CORBA Components

provide transparent exchange of information across different
components. CORBA provides a layer of abstraction between
the application and the specifics of the operating system and
lower layers enabling a flexible flow of information across
the software bus.

An in-depth description of CORBA is beyond the scope of
this paper, but we will briefly describe its operation from the
SCA perspective. First, a CORBA component is defined by
describing its interfaces in the CORBA Interface Description
Language (IDL), including methods and attributes. Once the
interfaces are defined, they are passed through an IDL com-
piler which creates bindings to the specific implementation
language (e.g. C, C++, java, Python, etc.). Two different
sets of bindings are created: one skeleton for servants (the
components providing a service) and one stub for clients (the
ones using a service). From here, a developer has to populate
the skeletons implementing the actual functionality.

At runtime, the components register with the ORB and get
a unique reference assigned to them. When a client requires a
service, it takes the servant’s reference, usually obtained from
a naming service, and makes the request using the local stub
as if both, client and servant, were collocated. This process
is shown in Figure 2. Once the request has been sent, the
ORB takes control. It finds the servant, delivers the messages,
and returns the results – all performed transparently from the
client’s perspective.

2.3. OSSIE

The Open Source SCA Implementation::Embedded (OSSIE)
Project [4] is an initiative by the Mobile and Portable
Radio Research Group (MPRG) of Wireless@Virginia Tech
to provide an open-source implementation of the SCA.
OSSIE is written in C++ and uses omniORB and the Xerces
XML parser, both of which are openly available. OSSIE is
developed for Linux and specifically supports the Fedora
distribution. Cygwin or VMWare can be used to run OSSIE
on Windows or other platforms. It only implements the

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

minimum elements of the architecture required to operate.
It also makes some basic assumptions that simplify the
development (e.g. only one implementation per component,
a DeviceAssignmentSequence is provided when deploying a
waveform), making it suitable for efficient, flexible imple-
mentations.

Although OSSIE is not a certified implementation of the
SCA, it provides an excellent framework for SDR education
and experimental SCA development due to its simplicity,
shallow learning curve, and free distribution. Currently,
OSSIE has been used to teach SDR classes in Virginia Tech
and the Naval Postgraduate School (NPS) and several other
research projects.

Besides providing an implementation of the SCA core
framework, OSSIE includes a select set of signal processing
modules and tools that support the development of wave-
forms. The OSSIE Waveform Developer (OWD) allows users
to easily assemble waveforms by creating the architectural
code compliant with the SCA and all the XML descriptors
required. Another very useful tool is ALF1, which provides a
visual environment to manage SCA waveforms. ALF allows
the deployment of waveforms, locally or remotely, and the
visualization of data being passed between components,
thanks to a set of plug-in tools.

In order to facilitate the interaction with RF and digital
conversion hardware, OSSIE also provides a logical device
to that serves as a proxy to integrate the Universal Software
Radio Periferal (USRP) into the SCA.

2.4. Universal Software Radio Peripheral

The USRP is a open-source, low-cost digital conversion
board designed to allow general purpose computers to capture
a wide spectrum band. It was developed for the GnuRadio
Project and can be coupled with several RF daughter boards
that allow access to different spectrum bands [5].

The USRP has 4 high-speed analog to digital converters
(ADC) and 4 high-speed digital to analog converters (DAC),
12 bits per sample and 64MSamples/sec, and 14 bits per
sample and 128MSamples/sec, respectively2. All ADCs and
DACs are connected to an Altera Cyclone EP1C12 FPGA,
which performs all of the high-speed general purpose oper-
ations(e.g. digital up and down conversion, decimation and
interpolation). The interface with the computer is done via
USB2.

One of the biggest advantages of the USRP is its low cost.
This has made the USRP a very popular device within the
SDR community. However, at a base price of $7003, even the
USRP can be expensive when considering procurement for a
large SDR class. Hence the need for some institutions under
budget constraints to share this kind of hardware platform.

1ALF stands for “Alien Life Form”, which was the initial project name.
2Specifications at the time of submission. However, the upgraded USRP2

will soon enter the market.
3List price at the time of submission.

3. DISTRIBUTED WAVEFORMS FOR REMOTE
RESOURCE SHARING

In an effort to faciliate remote resource sharing and access
to critical hardware even for distance learning, we propose
an approach that leverages the intrinsic characteristics of the
SCA to abstract the underlaying platform without affecting
the application’s logic.

The basic premise is that a group of students, or users, will
share a specific piece of hardware that is too expensive to buy
for each user but critical for SDR education, the USRP for
example. The basic approach is to have a distributed platform
that comprises a main node (UNode), the one with the USRP
connected, and multiple remote nodes (RNodes). Within this
super platform, there is a proxy in the UNode between the
USRP and the rest of the domain, the “USRP Device”, which
is in charge of configuring the USRP and translating data into
the CORBA domain. Notice that “USRP Device” can support
multiple data connections.

Remote nodes are all part of a single SCA domain
controlled by the DomainManager. Basically, every time a
new user wants to get access to the USRP, it registers her
own computer as a remote node, technically adding more
processing capability to the whole radio domain. Then, she
deploys a waveform in which the majority of the components
reside in her Rnode, but gets the data from the USRP device
in the U node. This setup is depicted in Figure 3. The only
requirement to achieve this deployment configuration, is that,
at build time, the right components are paired with the right
devices in OWD. This will generate a DeviceAssignmentSe-
quence that tells OSSIE where to deploy each component.

The U Node is always running and is configured and
managed by the instructors. It also contains an instance of
the GPP device, which allows certain fast or latency-sensitive
components to be deployed in the same hardware where
the USRP resides. A common example of this would be
a Decimator. The UNode contains the “DomainManager”
and a “DeviceManager”, which launches and configures the
devices in the node. On the other hand, the RNode only
contains an instance of “DeviceManager” to launch and
configure the logical devices residing in it (e.g. GGP and
SoundCard devices).

In order to get access to the UNode, the remote user
would have to configure omniORB to use the IP address of
the U Node as the initial reference for the ORB. She would
then launch the remote node, using OSSIE nodeBooter,
effectively making the new node available to the domain.
When this step is completed, she can use ALF to show and
install the available waveforms and components in the radio
domain from the remote computer. She can pick her desired
waveform, install it, display it, and debug it using ALF, with
all the signal processing components running locally in her
computer, while getting real-time data from the remote USRP.

When different users try to get access to the USRP,
they follow the exact same procedure letting OSSIE and
CORBA handle the multiple connections to the USRP. This

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

Fig. 3. Distributed receiver architecture

Fig. 4. Logical waveform deployment

way, simultaneous waveforms are deployed which share the
USRP data, as shown in Figure 4. CORBA interfaces can
support, in theory, an infinite number of fan-out connections.
This allows the same data received by the USRP to be
broadcasted to every waveform. In reality, there is a limit
to the number of connections which depends of the specific
CORBA implementation. The limiting term, however, is the
latency increase that happens every time a new connection
to the USRP is added. We get into more details about
this in the results section. In order to limit the maximum
number of connections allowed by the USRP, a capacity
model is required, where the USRP connection capacity is
established. When a new waveform includes the USRP, part
of this capacity gets allocated to it at deployment time. When
the waveforms are uninstalled, the capacities are returned.
Note that this is the expected behavior for logical devices as
specified by the SCA.

4. MANAGEMENT APPROACH

In setting up this approach, there are many important aspects
that must be considered. One of them is the kind of labs or
experiments that can be performed. The remote approach we
are proposing is better suited for simple broadcast reception,
where a single antenna,or antenna array, can feed a multitude
of receivers and where latency is not a critical issue. Re-
ceivers for AM, FM, or digital packet radio broadcasting can

be setup this way. While it may seem limited, these options
are usually enough for a one semester SDR class. It is a bit
more difficult to set up experiments where transmission is
required. The setup of the USRP and the multiple access to
its resources by multiple users is more involved. We can en-
vision, however, a frequency-division multiple access system
implemented in the USRP where users get assigned a specific
transmit channel as a possibility to enhance this approach.A
description of this approach lays beyond the scope of this
paper and will be addressed in a future publication.

Another important aspect to be considered when imple-
menting this approach is the security of the UNode and its
local network. Because it is necessary to open some TCP
ports in the firewall to allow remote CORBA connections,
possible vulnerabilities are created. There are many ways to
address these issues, from setting up SSH tunneling to a full-
fledged VPN. Close collaboration with the IT staff will be
required when setting up the labs.

The course instructor needs to setup the UNode with
a USRP and configure it to the appropriate frequency and
decimation rates. Because of the experimental nature of the
waveforms being developed by students, they are expected to
have errors. Therefore, the ports of the “USRP device” need
to be robust enough to support the occasional connection
failure. This issue has been addressed for the most part on
the current OSSIE repository, but there are always situations
that are not foreseen and result in unexpected behaviors. This
requires the instructor to occasionally improve the device
code and, more importantly, to have a way to remotely restart
the “USRP device”

4.1. Resource Requirements

In order to set up the right number of Unodes to provide
an adequate service to the students, it is necessary to collect
some statistics about the access behavior of the class. Once
the statistics are available, some basic concepts from queue-
ing theory can be applied to estimate the number of USRP
ports that are required. It is difficult to have traffic statistics
for the very first time this approach is executed, so some
assumptions are necessary.

Assume a class of 25 students who are performing an
experiment that takes in average two hours to complete. Let’s

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

further assume that students work individually and only from
5:00 to 10:00 PM for four days a week (before that time they
are in class, after they are asleep, and they take Fridays and
weekends off). That leaves us with a total of 20 working
hours during which they are expecting access to the USRPs.
If the remote log-ins are uniformly distributed across all
working hours, then there are in average 2.5 log-ins per hour.
That is our arrival rate. Because the experiment takes two
hours to be completed that leaves the busy hour traffic,E,
as 5 Erlangs. We can use this and the Erlang-B equation (1)
to estimate the blocking probability,Pb, for a student who
tries to use one USRP port remotely for a given number of
USRP ports available,m.

Pb =

E
m

m!∑
m

i=0

Ei

i!

(1)

Figure 5 shows the resulting blocking probabilities for
different number of available USRP ports under the current
scenario. If we setup a target blocking probability of 0.05,it
can be achieved with only 9 USRP ports. If we allow three
logical connections per physical USRP, then we only need
three USRPs and UNodes to serve the whole class. This
approach can greatly reduce the budget requirements to run
a hands-on SDR class. There are other things that can be done
to further reduce hardware requirements, organize students by
team for example, without much impact on the quality of the
training. Direct physical access to the hardware could alsobe
supported with three USRPs, but only with strict scheduling,
and with no ability to support distance learning students.

Fig. 5. Remote user blocking probability as a function of available USRP
ports

5. RESULTS

In order to validate the feasibility of our approach, we set up
a U Node and several RNodes and verified that the infras-
tructure was capable of supporting it. We chose a simple AM
receiver waveform to deploy across all different RNodes.

The basic AM receiver waveform application, depicted in
Figure 6, is currently assigned to the students during the SDR
class in Virginia Tech and the NPS. It consists of a simple
AM demodulator that receives data from the USRP through
a decimator. The output goes out to the sound card. In our
case, instead of sending the output to the speakers, we used
the “speaker” utility of ALF to confirm the correct reception
of the AM signals captured over the air.

Fig. 6. Sample logical application (AM Receiver)

A total of five R Nodes were created and deployed over
an Ethernet network to verify the feasibility of the approach
and identify its limitations and shortcomings. One of the most
important issues is the maximum number of waveforms that
can be supported by a single USRP. In this experiment, a
total of five waveforms were deployed without significant
degradation of the sound quality at the output. Because of the
use of CORBA, the actual number of connections supported
depends on the implementation, but it is much larger than
what we can support due to latency. In OSSIE, “provides”
ports literally cycle through all the connections and send the
same CORBA message to each one them. If the port takes too
long to send a specific packet, data coming from the USRP
can overwrite older samples, causing a Rx Overrun.

Fully characterizing latency in a TCP/IP network is an
involved and complex process, and assessing middleware
performance under it is an important research topic, but
it is beyond the scope of this paper. Here, we are mostly
concerned with assessing feasibility and we limit our results
to characterizing the performance penalty due to extra con-
nections to the USRP. To this end, we measure the time the
USRP takes to send a packet across multiple waveforms. We
do this by profiling the pushPacket function in the USRP
logical device implementation. Inside this call, the message
is fanned out to all active connections, in our case, to all
waveforms using it.

We profiled pushPacket under three different scenarios. In
the first one, the UNode and all the RNodes are collocated
in the same processor. This is possible, because the distinct
nodes are logical representations and can be deployed any-
where without affecting the waveform’s logic. This scenario
gives us a baseline reference to evaluate the impact of
distributing the waveforms across different computers. Inthe
next two scenarios the UNode and RNodes are deployed
on two different computers connected via a TCP/IP LAN.
In the first one, the decimator component is deployed in the
U Node, technically leaving the same connection layout as
in the previous scenario, because the USRP would send data
to components that are collocated. For the last scenario, the
decimators were deployed in the RNodes.

Figure 7 shows the average delays for all three scenarios.
We can see that both cases where the USRP and decimators

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

Fig. 7. USRP PushPacket Average Delay

are collocated have similar delays that depend linearly on the
number of nodes connected, as expected. When the USRP
has to send data through the LAN before the sample rate is
reduced by a decimator, however, we can see a significant
increase in latency over the previous two scenarios. Again,
latency is linearly dependent on the number of remote
nodes connected. Using Figure 7, we can make a ball-park
estimation of the latency overhead incurred by distributing
waveforms. For our system, every time there is a network
connection, a minimum of 3.5 ms need to be added to the
latency, plus 0.5 ms for collocated connections and all the
processing time. Needless to say, there are many factors
that can impact these results: processor speed, network data
rate, traffic, etc. These have to be considered and more
experiments need to be performed before deploying this
approach.

6. CONCLUSIONS

In this paper we described how to use OSSIE, the inherent
distributed properties of the SCA, and the USRP to provide a
practical, inexpensive environment to support SDR hardware
resource sharing to enhance SDR education. This approach
not only presents convenient remote access by the students
to the SDR platforms, but also enables distance learners to
benefit from practical experiments and labs.

This approach was demonstrated by implementing a simple
AM waveform that was distributed across multiple nodes. A
total of five nodes were deployed through a TCP/IP LAN
and five waveforms were able to share the USRP without
degrading the received sound quality.

ACKNOWLEGMENTS

This work was supported by Texas Instruments, SAIC, and
Wireless @ Virginia Tech Affiliates, and by the National
Science Foundation under Grant No. 0520418. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

References

[1] F. Kragh, J.H. Reed, C.B. Dietrich, and D. Miller.Education for Soft-
ware Defined Radio Design Engineering. ASEE National Conference,
June 22-25, 2008.

[2] E. Gamma, R. Helm, R. Johnson, and J Vlissides.Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[3] Common Object Request Broker Architecture (CORBA/IIOP) Specifi-
cation. Available at:http://www.omg.org.

[4] Open-Source SCA Implementation::Embedded. Available at:
http://ossie.mprg.org.

[5] Ettus Research Website. Available at:http://www.ettus.com.

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

	Home
	Papers By Alpha
	Papers By Session

