
Impact of the use of CORBA for Inter-Component
Communication in SCA Based Radio

Philip J. Balister
Wireless@VT

432 Durham Hall, Mail Code 350
Blacksburg, VA 24061

Telephone: (540) 231-2958
Fax: (540) 231-2968

Max Robert
Wireless@VT

432 Durham Hall, Mail Code 350
Blacksburg, VA 24061

Telephone: (540) 231-2958
Fax: (540) 231-2968

Jeffrey H. Reed
Wireless@VT

432 Durham Hall, Mail Code 350
Blacksburg, VA 24061

Telephone: (540) 231-2958
Fax: (540) 231-2968

Abstract— One of the principal problems with SDR
in general and SCA in particular is that the overhead
incurred through the use of a software infrastructure is
difficult to assess. This difficulty stems from the lack of
reference point to which to compare this overhead. In
an attempt to quantify this overhead, this paper presents
the implementation of a simple radio system, in this case
an FM receiver, and quantifies the overhead incurred by
the use of the SCA, specifically by the use of CORBA
within the context of the SCA. Results show that while
this overhead is measurable, it is significantly lower than
the processing required for the receiver’s signal processing
task. This shows that, even when the receiver itself is fairly
simple, the overhead incurred by the use of CORBA is
minor.

I. INTRODUCTION

The Software Communication Architecture [1] (SCA)
developed as part of the Joint Tactical Radio System
(JTRS) program provides a software framework for a
software defined radio (SDR) system. By defining a
standard software framework, the JTRS program hopes
to improve software reuse across multiple radio systems,
reducing the time and cost required to develop radios.

The SCA builds on the industry standards CORBA [2]
and XML [3]. CORBA is middleware which provides
interfaces between the different software components
used by the radio. The primary features of CORBA in
the context of SCA-based radios are component location,
inter-component communication, and logging. XML is
a text-based file format designed to be human readable
while maintaining a structure that is easy for a machine
to interpret. The SCA defines several XML file formats
that contain information describing the radio hardware,
softwarem and waveforms that run on the radio.

The work reported on in this paper is based on the

OSSIE [4] open source SCA framework developed by
Wireless@Virginia Tech. The OSSIE core framework
uses two other open source packages, omniOrb which
is a vendor implementation of CORBA, and Xerces-
c which provides XML parsing. Since the first release
of OSSIE in 20004, further releases of the framework
have improved SCA compliance and corrected problems
discovered while working with the framework. Virgina
Tech has delivered several projects based on OSSIE.
These projects include a scalability study based on
decoding several DRM broadcast signals simultaneously,
a cognitive radio demonstration based on Tektronix test
equipment, and a narrow band FM receiver.

Additional work involving OSSIE includes a port to
the ARM processor portion the TI OMAP processor, a
port to the TI C6416 DSP, and a waveform development
tool for rapid prototyping of waveforms.

One of the concerns with the SCA is that CORBA
uses excessive system resources. This paper examines
the impact of CORBA on overall central processing unit
(CPU) usage. The results show that CORBA does not
require a large amount of processing time to perform
the inter-component communication task.

II. DESCRIPTION OF TEST WAVEFORM

An FM receiver waveform, developed as part of the
Chameleonic radio project [5], was used for performance
testing. While the receiver was running, profiling soft-
ware collected run time execution information about the
processes that executed and what lines of code were
executing. From this data, estimates can be made about
what portions of the software executed most frequently.

The receiver is based on a PC running Linux with
the waveform developed using the OSSIE core frame-
work. The RF interface is a Universal Software Radio

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved



Peripheral [6], part of the GNU Radio project [7]. The
USRP provides an RF front end operating in the 400-500
MHz range, analog to digital conversion, an FPGA that
provides a digital down converter, decimation and a USB
interface to the PC. An SCA device proxy interfaces
the USRP to SCA compatible waveforms. A device
proxy provides an interface between the hardware and
the software-based components.

There is also an SCA device proxy that interfaces with
the sound card in the PC to provide the audio playback
function.

The FM receiver waveform consists of three compo-
nents: a decimator, the FM demodulator, and a receiver
controller component. The decimator receives the signal
from the USRP device and passes it on to the FM
demodulator. The FM demodulator sends the recovered
audio to the sound card interface device.

The firmware provided with the USRP may decimate
the incoming signal by a factor of 4 to 256. This results
in a minimum sample rate delivered to the host computer
of 250 ksps. This provides a bandwidth far larger than
required for narrowband FM, so the first processing step
is to reduce the sample rate by a factor of 10. The
incoming samples are low pass filtered, and every tenth
sample is output to the FM demodulator.

The FM demodulator receives the complex baseband
signal from the decimator component. A phase locked
loop (PLL) extracts the audio from this signal. There
is an automatic gain control (AGC) prior to the PLL
phase detector that maintains the input signal at a level
comparable to the signal coming from the numerically
controlled oscillator (NCO). This is required to maintain
the gain from the phase detector at a constant. After
the loop filter there is a DC blocking calculation, which
removes any constant level (due to a frequency offset)
from the recovered audio. The recovered audio is then
sent to the sound playback device.

III. IMPACT OF CORBA ON RADIO PERFORMANCE

One question regarding use of the SCA for portable
radios is the SCA’s dependence on CORBA for inter-
component communication. CORBA provides a vendor-
independent, platform-neutral structure that allows ap-
plications to communicate with each other [2]. These
applications do not need to reside in the same processing
unit, they may be distributed across processors connected
by some form of communication network. Typically, this
is a network, but may be a special hardware inter-connect
for platforms such as DSPs. There is an extension to
CORBA under development by the Object Management

Group [8] to provide a structure for specialized trans-
ports for use by CORBA; this is called the Extensible
Transport Framework (ETF). The transport examined in
the report is based on TCP/IP.

Since CORBA contains capabilities beyond what is
required for providing inter-component communication
for software defined radios, there was some concern
that CORBA would require excessive system resources
such as processor cycles and memory for the radio built
for this project. This section presents information about
the impact of CORBA on the final waveform. This
report does not look at the latency or data transfer rate
limitation, rather it looks at the processor overhead added
internally to a component by using CORBA for inter-
component communication.

The software performance is measured with a tool
called oprofile [9]. Oprofile is a statistical, kernel based
profiler that runs on Linux. Since data collection is per-
formed by the kernel, no modifications to the programs
of interest are required. A profiler records execution data
from the running system that includes instruction pointer
and stack pointer information. From this information, a
post-processor produces reports showing how frequently
the program executes specific functions and particular
lines of code. By examining call addresses on the stack, it
is possible to divide subroutines time amongst the callers
of that function.

An FM receiver was built from the components
described earlier in this report. The RF squelch was
adjusted so that signal always arrived at the demodulator.
After loading and starting the waveform, the profiler
was started. This prevented the profiler from counting
waveform start-up events. After running the waveform
for over thirty minutes, the profiler was stopped and
reports were generated.

Three reports were produced for each executable that
was profiled. The first report showed overall cpu usage
by function, the second showed the call graph and how
CPU usage was attributed to different parent functions,
and the final report was disassembled source with ex-
ecution information. Three components were profiled,
the USRP interface device, the decimator and the FM
demodulator.

Here are the results by routine name for the USRP
device:
samples % symbol name
2180 51.6343 rx_data_process(void*)
626 14.8271 memcpy
53 1.2553 pthread_mutex_lock
50 1.1843 free

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved



50 1.1843 omni::giopImpl12::
marshalRequestHeader

44 1.0422 malloc
41 0.9711 (no symbols)
38 0.9000 .plt
36 0.8527 omniObjRef::_invoke
36 0.8527 (no symbols)
33 0.7816 standardInterfaces_i::

complexShort_u::
pushPacket

Half of the CPU time is spent in the rx data process
routine. This is the routine that reads data from the USRP
and writes it to the decimator via an SCA port. Fourteen
percent of the time the component is calling the memcpy
functions. Memcpy is part of the standard C library.
Using the call graph report, the routines calling memcpy
will be identified. In addition to these two routines, the
remainder of the CPU time is scattered across many
different routines. It is important to note that 25% of
the execution is accounted for by routines that use less
than 1% of the total time used by the USRP process.

Here is the call graph output for the memcpy function:
samples % symbol name

9 1.4377 omni::giopStream::
put_octet_array

20 3.1949 omni::tcpEndpoint::
AcceptAndMonitor

597 95.3674 usrp_basic_rx::read
626 14.8271 memcpy

626 100.000 memcpy [self]

The call graph shows the relationship between differ-
ent interactions with a particular function, in this case
memcpy; the functions memcpy calls and the functions
that call mempcy. The function of interest, memcpy, is
on the line where the function name is not indented.
The functions called by memcpy are below it, and
the functions that call memcpy are above it. In this
case, memcpy does not call any functions, so all the
execution time is attributed to memcpy. 96% of the calls
to memcpy came from the usrp basic rx::read function.
This function reads data received over the USB interface
from the USRP. These numbers suggest reviewing the
code in this routine to look for unnecessary memory copy
operations. 1

After the USRP device collects the data from the
USRP hardware, the data is sent to the decimator to
reduce the sample to 25 kHz. The decimator compo-

1In the overall picture, the USRP device does not require a
significant amount of processing time, so the relative amount of
memcpy calls is not a serious system problem.

nent receives data from an SCA port implemented with
CORBA, reduces the sampling rate and performs an FIR
filter, then sends the data to the FM demodulator via an-
other SCA port implemented with CORBA. This should
produce clearer results for CORBA versus component
processing. Since the decimator only contains signal
processing code and the CORBA code implementing the
SCA ports, function usage should be clearer.

Here are the profile results by function name for the
decimator component:
samples % symbol name
44511 71.6659 fir_filter::do_work
14548 23.4233 run_decimation
905 1.4571 complexShort::

providesPort::
pushPacket

304 0.4895 memcpy

For this component 96.5% of the time, the com-
ponent is executing in one of three routines, the
fir filter (fir filter::do work), the main component thread
(run decimation), or the routine that receives data from
the USRP (complexShort::providesPort::pushPacket).

From these results we can see that at first glance the
CORBA related overhead is very low. We expect to see
most of the processing time used by the filter. The 23%
used by the run decimation routine deserves a closer
look.
14548 23.4233 run_decimation
43530 74.2035 fir_filter::do_work
14548 24.7993 run_decimation(void*)

[self]
491 0.8370 standardInterfaces_i::

complexShort_u::
pushPacket

69 0.1176 standardInterfaces_i::
complexShort_p::
getData

Inspecting the call graph shows that besides the time
allocated to the fir filter, the remaining time used by
run decimation is in the routine itself. The fir filter
routine shows up since run decimation calls it with data
it receives from the USRP.

Examination of the oprofile report showing interleaved
C++ source code lines with the assembly code suggests
that much of the time spent in run decimation is taken
up copying the filter output into the CORBA sequences
used to send data to the next component. The analysis
is complicated by the fact that the compiler optimization
process creates assembly code that no longer has a clear
relationship with the C++ source. For this case, a simple

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved



routine was written that performs a similar function.
The output for this case was compared with the output
from the run decimation routine to verify how assembler
sections mapped to C++ source code.

Finally, here is the function profile for the FM De-
modulator component:
samples % symbol name
3156 20.5804 sin
2803 18.2784 cos
1885 12.2921 phase_detect::do_work
1732 11.2944 dc_block::do_work
1675 10.9227 run_demod
1322 8.6208 nco::do_work
1010 6.5862 gain::do_work
193 1.2586 memcpy
92 0.5999 pthread_mutex_lock
81 0.5282 complexShort::

providesPort::
pushPacket

Once again, these routines use just over 90% of the
processor time used by the component. The run demod
method uses more time than is expected, but this is again
due to copying data into the CORBA sequence used to
send the data to the next component.

While the CORBA sequence may appear to create
a certain amount of overhead, it is not certain that
changing to a different data structure would lead to much
improvement. It would be worthwhile to investigate the
use of the C++ vector class, or traditional C arrays.
However, in the overall picture, the load due to using the
CORBA sequence, while measurable, is not out of line
with the overall system performance. Furthermore, there
are benefits obtained by using the CORBA Sequence.
The CORBA Sequence easily integrates with the mech-
anism used to send and receive data using CORBA, the
CORBA sequence provides bounds checking as well as
memory management, reducing development mistakes.
These features provide good performance in a CORBA
environment and help increase radio security by provid-
ing a defined error path should a malicious user inject
bad data into the radio that causes the software to write
data outside the sequence.

IV. SUMMARY

This paper presents the profiling of an SCA waveform,
in this case an FM receiver for a push-to-talk system.
The presented profiling concentrated on overall CPU
usage. Results show that while CORBA’s impact on the
performance of the system is measurable, they were sig-
nificanly lower than the signal processing time required
for this waveform. This difference is stark, especially
when taking into account the relative simplicity of an
FM demodulator. Furthermore, when weighed against
the benefits associated with the use of CORBA, namely
distributed system support, strong typing, and memory
management, it is clear that the use of CORBA is
compatible with the overall performance needs of an
SDR, even one in a constrained environment.

REFERENCES

[1] “Software Communications Architecture Specification,” Final/15
May 2006 Version 2.2.2, Joint Program Executive Office (JPEO)
of the Joint Tactical Radio System (JTRS), May 2006. Also
available at http://jtrs.spawar.navy.mil/sca/.

[2] “The OMG’s CORBA Website.” http://www.corba.org/.
[3] “Extensible Markup Language (XML).” http://www.w3.

org/XML.
[4] “OSSIE.” http://ossie.mprg.org/.
[5] “Chameleonic Radio.” http://www.ece.vt.edu/swe/

chamrad/.
[6] “GnuRadio:UniversalSoftwareRadioPeripheral.”

http://comsec.com/wiki?
UniversalSoftwareRadioPeripheral.

[7] “GNU Radio - GNU FSF Project.” http://www.gnu.org/
software/gnuradio/gnuradio.html.

[8] “Object Management Group.” http://www.omg.org/.
[9] “OProfile - A System Profiler for Linux (News).” http://

oprofile.sourceforge.net/news/.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved


	Search by Author
	Search by Session



