
Copyright © 2004 General Dynamics. All rights reserved.

RAPID SDR WAVEFORM DEVELOPMENT IN FPGAS USING DSP BUILDER

Steven W. Cox Joel A. Seely
General Dynamics C4 Systems Altera Corporation
8201 E. McDowell Road, MDR3125 101 Innovation Dr
Scottsdale, Arizona 85257 San Jose, CA 95134
(480) 441-1736 (408) 544-8122
steve.cox@gdds.com jseely@altera.com

ABSTRACT

Software defined radio technology is achieving rapidly
growing acceptance as a military communications
platform because of its security advantages and its ability
to be reconfigured to meet specific mission parameters.
Programmable logic offers the performance, flexibility,
and cost-effectiveness required for SDR systems. One of
the challenges in implementing SDR designs is the long
and growing list of waveforms that must be implemented
in programmable logic as well as the need to be able to
rapidly develop new waveforms.

Traditional waveform implementations in FPGA require
separate design efforts at both the system and component
level. This is repetitious, time-consuming and costly.
What is needed is a development flow that allows the
designer to more efficiently implement these waveforms at
the component level. This paper will describe an optimal
FPGA design flow for waveform implementations using
the DSP Builder tool. It will outline the benefits to be
derived from using FPGA building blocks and a system-
level tool in waveform development for Software Defined
Radios (SDRs).

1. INTRODUCTION

The use of FPGAs in software defined radios is becoming
ubiquitous as more systems require interoperability across
multiple standards. Part of this trend is due to the heavy
reliance on configurable hardware, which is used for
increasing levels of processing when implementing the
waveforms [1]. To quickly develop these waveforms,
some of which are extremely complex, tools with a higher
level of abstraction are required. Altera’s DSP Builder
tool and associated IP blocks provides an integrated
environment that can be used to develop hardware

implementations of waveforms. This method streamlines
the FPGA design flow using: Mathwork’s Simulink
capabilities, fixed point blockset with Altera FPGA
objects, and interfaces to third party tools to generate a
synthesizable FPGA HDL. This tool allows multi-
disciplined users to work at higher levels of abstraction in
a common workspace. All aspects of waveform
development: design, simulation and verification can be
addressed at the Simulink level prior to hardware
implementation.

2. TRADITIONAL FPGA WAVEFORM DESIGN
METHOD

SDR waveform design has typically been extremely
inefficient. In the past, system-level specifications and
simulations were “thrown over the wall” to the hardware
designers who then started coding in their favorite
Hardware Definition Language (HDL). There were, of
course, some challenges with this approach. First, the
system designer had no insight into the implementation
details of the FPGA and, therefore, could not best
optimize the system design without lengthy
communications with the engineers implementing the
design. Secondly, the designer needed to be an expert in
HDL—not the sort of expertise an engineer was likely to
pick up overnight. Third, this approach involves manual
code generation, which is time-consuming and tedious, as
well as likely to require extensive debugging—all of
which increases development time and cost. This
approach also contains some inherent tendencies towards
inefficiency, since the system must be created twice, first
on the system-level tool and then on the implementation
tool—once again increasing the time and cost of system
development. Figure 1 provides an example flowchart for
this traditional waveform development flow.

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

Copyright © 2004 General Dynamics. All rights reserved.

Figure 1: Traditional Waveform Design Flow

3. DSP BUILDER: SIMPLIFYING WAVEFORM
DESIGN

As FPGAs increase in complexity, it is necessary to have
system-level tools that can aid the designer in simplifying
the design methodology. Tools such as Altera’s DSP
Builder have been developed to address the issues found
when performing complex system development such as
waveform design. With this tool, a new design flow
consists of 5 segments: defining architecture,
implementing/designing modules, integration of modules,
and translating the design to physical FPGA and verifying
the part in the lab. See Figure 2:

4. ARCHITECTURE DEFINITION

The typical process for FPGA waveform implementation
is to start with an existing model, and then “porting” it to
an FPGA. Floating point Simulink models of standard
waveforms such as FM, SSW, or MIL-STD 110A are
examples of waveforms that are readily available These
floating-point models can be used as a guideline and
comparison tool, as well as for initial sizing and
architecture mapping estimates for the FPGA
implementation. A functional block-diagram of a typical
waveform is shown in Figure 3.

5. IMPLEMENTATION/SIMULATION:

DSP Builder combines the algorithm development,
simulation, and verification capabilities of The
MathWorks MATLAB and Simulink system-level design
tools with VHDL synthesis, simulation, and Altera
development tools. The waveform design entry uses
Altera DSP Builder blocksets and Simulink toolbox
blocksets in the Simulink schematic capture environment.

Figure 2: Altera DSP Builder Design Flow

-- Start with existing
 floating point Simulink
 model
-- Design to 110A spec:
 1200 bps mode
-- Protocol definition

Define
Architecture

Design and
Implement
modules

Integrate
modules

Translate
design to

Altera FPGA
Verify design

in the lab

--SubBlocks
 1. Design in DSP
Builder
 blocks
 2. Get data from
 simulink model
 3. Timing/detail design
 uses Modelsim
 (.VHDL)
 4. Run DSP Builder in
 simulink when
 verifying data

-- FPGA design
 1. Remove stimulus
 from design for
 synthesis
 2. Generate Quartus
 symbol with
 DSP Builder script.
 3. Point Quartus to
 new design vhdl and
 symbol to insert into
 existing schematic.
 4. Insert symbol,
 appropriate test
 points and compile.
 5. Check timing.

--All Blocks
 1. Divide simulation in
 fast and slow clocks
 rates if possible.
 2. Use sims to examine
 boundary conditions
 in design
 3. Use Modelsim for
 timing issues
 4. Run sims with DSP
 Builder to verify
 data
 5. Use DSP Builder for
 initial sizing and
 synthesize.

-- Lab Verification
 1. Check data with
 Logic Analyzer.
 2. Store data from
 Logic analyzer to
 file.
 3. Analyze final data
 from logic analyzer
 in simulink.

Waveform Matlab/Simulink
Floating Point Model

Timing
Verified?

Waveform
Requirements

Waveform Detailed
Design Documents

Simulate to
Validate

Verify Against Floating Point
Model using ModelSim/Quartus

Verify VHDL Timing
using ModelSim

Compile VHDL using
Altera Quartus II

Test Waveform

Waveform FPGA
Design/Docs

Hand Code in VHDL,
Verilog, or Schematic

yes

No

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

Copyright © 2004 General Dynamics. All rights reserved.

Figure 3: Transmit 110A Top Level Block Diagram

More complex functions such as FIR filters, NCO, FFT, and
others, can be integrated into DSP Builder using MegaCore
functions that plug into the tool. An example of the FIR
Megacore configuration page is shown in Figure 4:. These
wizard driven IP blocks are valuable because you can alter
parameters and watch the simulated output before finally
adding the HDL to the system.

Figure 4: FIR Compiler Megacore Configuration

Wizard

The DSP Builder tool provides Simulink graphics
conversion to VHDL for third party VHDL simulators.
Modelsim, an efficient and fast event driven simulator, can
be used for timing analysis on the subblocks. The subblock
timing design flow is shown in Figure 5: As the designer
verifies the timing and control in Modelsim, he updates the
design in the Simulink environment. With the push of a
button, conversion of the Simulink graphics to

Figure 5: DSP Builder Timing Design Flow

- Format symbol to 1,
2, 3 bits
- grey code data

Prom
data

FEC

1
1

clk

 Interleaver

2.4kHz

1
3,2,1

Grey
Encode/
Symbol
Formatter

Constellation
Mapper

Preamble
Generator

Scrambler Modulator
16I,
16Q

3

3

3

3

Packet
Formattor

Data from
Simulink

- Rate 1/2
- Output clock rate
doubles

- Ping-pong memory
- Input data rate = half of input clock
rate
- Syncs on interleaver frames

- Map symbol to
constellation

- Generate preamble
- mode dependent
parameters
- Long/short formats

- Form packet
- Timing

- Randomize data according
to sequence
- data/sync random sequence

- LUT for
modulation
- 8 psk

clk

Do schematic capture of
design with DSP Builder in
Simulink

Run DSP Builder to
generate VHDL

Run Timing Analysis in
Modelsim using tcl script
generated by DSP Builder

Analyze
data

Reiterate
to fix
errors

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

Copyright © 2004 General Dynamics. All rights reserved.

VHDL, stimulus for the subblock design, scripts to load and
compile the updated design into Modelsim are all created.
This automation streamlines the iterative process of
simulating a design to assure a properly designed block and
removes all the onerous, but necessary task of organizing
scripts for translation to other tools.

The next step is data verification. The initial “known good”
floating point models are compared with the DSP Builder
models and verified. The DSP Builder model and floating-
point models are run separately in Simulink and their data
sets of interest are stored in the Simulink environment
workspace. Commands in Simulink manipulate the DSP
Builder fixed-point data by sub-setting the data sets to
compare to the floating-point model. To correct errors, the
designer updates the models in Simulink and reruns the
simulations to verify. The data verification flow is shown in
Figure 6:.

Figure 6: DSP Builder Data Verification Flow

6. INTEGRATION/SIMULATION:

DSP Builder models are built in C-Code, which simulates
than HDL interpretive simulators. For this reason, data
validation was accomplished in the Simulink environment.
After design validation, an initial sizing and synthesis of the
DSP Builder design is performed in Simulink. This provides
an early heads up to determine if further work is needed on
the design to compensate for sizing and timing constraints.
This methodology provides a good technique to fix problems
in the early stages of the design cycle prior to the time
consuming and costly fixes at the end of the design cycle.

To help with analyzing data during integration, tricks such
as separating slow and fast clock dependencies is used. This
helps alleviate extensive simulation times for signals that are
artificially slow. In the 110A example, the slow clock
dependences run from the beginning of the waveform chain
to the input of the scrambler. The fast clock dependencies
run from the scrambler to the output of the modulator. Due
to the latency in the interleaver, the data at the output does
not become valid until one frame has been written in. Only
valid data at the output of the data formatter was captured to
the workspace and the fast dependencies were run as a
separate simulation with only the valid data output from the
formatter. This integration/simulation methodology

significantly reduces simulation time for the high-speed
portion of the circuit and allows efficient design validation.

7. SYNTHESIS:

Input pins must be added to the design in place of the
Simulink stimulis model before synthesis. In the Simulink
model, input stimulus was stored in a PROM and DSP
Builder automatically generated the PROM file for
synthesis. The DSP Builder tool also generates a Quartus
script to load the design into the tool to create a symbol. The
user must anticipate the test points needed to observe the
entire new design. These test points are included in the
symbol block so they can be connected in the schematic. If
additional test points are needed after the compile, the user
must update the Simulink DSP Builder model. In order to
embed the new design in an existing schematic, pointers to
the new VHDL files and its symbol were included in the
Quartus project. Then the project was compiled and timing
results were analyzed. Embedding the new DSP Builder
design in the existing Schematic Capture design is easy and
straightforward.

8. VERIFICATION IN THE LAB

Once the design raw binary file is created it can be loaded
onto a development board such as the DSP Development
Board (see Figure 7:) or your own board. Each sub-block
can then be checked with a logic analyzer to make sure the
output from the hardware matches the simulation results.
Finally a snapshot of the output of the waveform in a
familiar constellation plot (see Figure 8:) can be taken.

Figure 7: Example Stratix II DSP Development

Board

Simulink Models

Run DSP Builder blocks in
Simulink and output data
to workspace

Compare and analyze data in Simulink workspace

Reiterate to fix errors

Run floating point Simulink
model and output data to
workspace

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

Copyright © 2004 General Dynamics. All rights reserved.

8-ary PSK Transmit Output

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Quadrature

In
 P

ha
se

Figure 8: Constellation Plot For 110A Transmit

Output

The value of this method is that the logic analyzer captured
final data (I and Q) can be verified against the data in the
floating point Simulink environment, which typically takes
only a few days. The upfront simulation and verification of
each of the sub-blocks makes the final checkout process run
smoothly and quickly.

9. CONCLUSIONS:

Figure 9: shows the expected review points for the different
stages of a waveform design and an estimate of the time to
complete each of these by the traditional design
methodology and using DSP Builder for the 110A test case.

Days To Implement SDR

0 2 4 6 8 10 12 14

Define Architecture

Design Modules

Integrate Modules

Translate to FPGA

Verify in Lab

Document
DSP Builder

Traditional Method

Figure 9: Comparison of Time to Complete

Portions of 110A SDR Using Traditional Method
and DSP Builder

The Simulink/DSP Builder flow allows the designer to
allocate time in an appropriate manner for developing
waveforms. With the traditional method, the FPGA designer
spends an enormous amount of time in the lab (30 % and up)
troubleshooting FPGA design/system issues. The DSP
Builder/Simulink/Modelsim simulation flow allows the
designer to rapidly identify problems and troubleshoot by
adding appropriate taps and re-simulating the model. Taking
simulations to an integration level significantly reduces
risks, time and resources in the lab.

The following points should be considered for future tool
development: 1. Plotting with the DSP Builder/Simulink
environment doesn't always result in cycle accurate outputs.
This makes it a necessity to validate timing with 3rd party
tools (Mentor Graphics ModelSim) 2. All blocks should be
parameterized when picking bus widths. 3. Signal Compiler
window should import timing constraints to Quartus. 4. In
order to make the test bench self checking, it must have
some sort of assertion checking. Several of these
enhancements are scheduled to be added in future releases of
DSP Builder.

The DSP Builder tool allows the hardware to be abstracted
to a higher level so the FPGA and system waveform
developers can operate in a common environment or be one-
in-the-same person. The tools have a very short learning
curve if the user is familiar with Matlab/Simulink and
hardware design. As the tool matures, some enhancements
may be added to help speed up waveform development.
Some suggested enhancements include expanding the
parameterization for building buses, seamlessly importing
timing constraints to the synthesis and place-and-route tool
(Quartus II), and automatically creating assertions when
generating test benches to make them self-checking.

The flow described has major advantages of streamlining
validation, lab checkout and providing a common
environment within which multi-disciplined personnel can
work and communicate. With its existing and upcoming
features, DSP Builder is a powerful tool for rapidly
developing SDR Waveforms on FPGAs.

10. REFERENCES

[1] S. W. Cox, “FPGA Based Waveform Design
Techniques for Software Defined Radios”, SDR Forum
Technical Conference, HW-1-005, November, 2003.

[2] DSP Builder User Guide, Altera
http://www.altera.com/literature/ug/ug_dsp_builder.pdf

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

