
FINE GRAINED CORBA SERVICES TO BUILD SCALABLE DRE
ARCHITECTURES

Victor Giddings (Objective Interface Systems, Inc., Herndon, VA)

victor.giddings@ois.com

ABSTRACT

As well as the functional services directly provided, the
CORBA Services, in particular the Naming and Events
Services, provide important “architectural glue” to systems
built with CORBA. Unfortunately, these services are
traditionally implemented as monolithic standalone servers.
This paper will discuss experiences with the use of a set of
fine-grained CORBA services that are more suitable for
architecting scalable Distributed Real-time and Embedded
(DRE) systems. These library-based implementations are
relatively “light-weight” in both CPU and memory usage,
and are hosted by an RTCORBA-compliant ORB. These
characteristics combine synergistically with CORBA’s
location transparency to provide an “architectural
transparency”. This provides some of the benefits, such as
flexible system assembly, that are attributed to component-
based software architectures without the need for additional
standards and their associated costs.

1. CORBA SERVICES

The above diagram shows the Object Model Architecture[1]
developed by the Object Management Group as a context
for the Common Object Request Broker Architecture[2].
While the focus of the architecture is the Object Request
Broker, there is provision for a set of generally useful
Object Services, as well as domain-crossing Common
Facilities. Object Services are “a collection of services
(interfaces and objects) that support basic functions for
using and implementing objects. Services are necessary to

construct any distributed application and are always
independent of application domains. [3]”
 There are a large number of defined Object Services:

• Additional Structuring Mechanisms for the OTS
• Collection Service
• Concurrency Service
• Enhanced View of Time
• Event Service
• Externalization Service
• Licensing Service
• Life Cycle Service
• Lightweight Log Service
• Management of Event Domains
• Naming Service
• Notification Service
• Persistent State Service
• Property Service
• Query Service
• Relationship Service
• Security Service
• Telecoms Log Service
• Time Service
• Trading Object Service

Figure 1: OMG Object Management Architecture

• Transaction Service
Of these, the Naming Service and the Event Service are
most often found in embedded systems.

1.1 Naming Service

The CORBA Naming Service helps to solve the “initial
reference problem” for CORBA clients, i.e., that clients
must obtain an Object Reference that is generated by a
CORBA server order to connect to the server to invoke
operations on the objects that the server process hosts. The
CORBA Naming Service server provides a “well-known
place” for servers to register Object References and for
clients to look them up. Servers bind Object References to a
“Name”, which consists of an arbitrary sequence of string
pairs. Each string pair designates an arc that originates at a
NamingContext. Sequences of these arcs result in arbitrary
naming graph; this allows hierarchical naming schemes to
be of arbitrary depth and accommodates aliasing. Clients
resolve the Name to obtain the correct Object Reference.
This reduces the amount of information needed to be shared
between a server and its clients, and divorces the

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

information from the details of configuration and
deployment.
 The CORBA Naming Service interfaces are expressed
in OMG Interface Definition Language (IDL) and
implemented in CORBA servers. This moves the initial
reference problem “upstream” from finding application-
specific object references to finding the Object Reference
for the correct NamingContext. The CORBA specification
provides a special feature, the resolve_initial_references
operation that allows the “root” NamingContext to be
found. There is provision for configuring the location of the
root NamingContext, in order to ensure interoperability
between products and applications.

1.2 Event Service

The CORBA Event Service provides asynchronous multi-
point to multi-point information transfer between suppliers
and consumers, each of which may be unaware of the
existence or identity of the others. An event channel
decouples suppliers from consumers and may untyped, i.e.,
capable of carrying any type of information, or typed, i.e,
capable of carrying a restricted set of set of information.
This style of communication complements the synchronous
point-to-point communication embodied in a CORBA
remote invocation.
 The Event Service interfaces are expressed in two sets
of IDL: one that specifies the Event Channel and subsidiary
objects that an Event Channel creates to connect suppliers
to consumers, and one that defines the responsibilities of
event suppliers and consumers. The Event Channel IDL
includes different versions for the un-typed and typed Event
Channel.
 It should be noted that the Notification Service was
defined to augment (some would say subsume) the Event
Services. It adds a host of features, including event filtering,
structured events (a weakly type event), and quality of
service control. Most of these features are directed toward
large-scale applications and not needed in DRE systems.

2. MONOLITHIC VS. FINE-GRAINED
IMPLEMENTATIONS

2.1 Monolithic Implementations

Although specified solely as CORBA objects, most
CORBA Service products have been implemented and
delivered as monolithic, standalone servers, i.e., as separate
programs that run in their own process.
 There are several good reasons why this is so: Delivery
as a program presents the user with a self-contained and
complete implementation in a single package, thus making
it easier for the provider to develop and maintain, and for
the user to configure.. Most implementations offer features

that are not part of the CORBA services specification, but
are expected by end users in an enterprise-targeted product.
For example, the Naming Service specification does not the
use of persistence for the recovery of the naming server
from crashes. However, most commercial products will
checkpoint the contents of the naming graph to a file or
database to allow a new instance of a server to recover the
state of a server that may have crashed or has otherwise
terminated.
 This practice is somewhat reinforced by the CORBA
standard method of configuring initial access to services.
The resolve_initial_references operation described earlier
takes one of a prescribed set of strings. For example, access
to the Event Service is requested by specifying the string
“EventService”. Only one object reference can be obtained
in this manner, thus reinforcing the notion that there is only
one event channel.

2.2 Fine-Grained Implementations

 In contrast, all CORBA services are specified in terms
of IDL interfaces to objects. In CORBA, objects are a fairly
fine-grained concept, and the location of each object is
transparent to the application. Indeed, this “location
transparency” is one of the major architectural advantages
of CORBA over previous technologies. It allows an
application to be designed and built to a distributable
object-oriented client-server logical architecture and bound
at deployment to a distributed physical architecture. Thus it
is entirely possible that the individual instances of the
objects that provide one of the CORBA services could be
distributed across multiple servers or even co-located in
application processes.
 In fact, there are several features in the defined
CORBA services that acknowledge or take advantage of
this ability to distribute pieces of a service across multiple
servers. The CORBA Naming Service has several
operations that directly support the notion of “federated”
Naming Servers: a situation where the naming graph is
distributed across several servers and unified by cross-
server bindings. The process of connecting suppliers and
consumers to the CORBA Event Service is deliberately
more complicated than necessary in order to allow
composing of event channels.
Most CORBA Service implementations can be built as
libraries that can be instantiated within and distributed
across an application’s servers. The resulting fine-grained
implementations provide implementations of the CORBA
interfaces required for the service, but do not provide an
execution context in which they process.
 There are several obvious advantages to fine-grained
implementation of the CORBA Services that lead to the
development of the Embedded Objects Services in the
ORBexpress product line.

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

 The first advantage is that the ORBexpress product line
is targeted to embedded and real-time applications. These
applications are often highly resource constrained, so that
dedicating a process to each service may not be possible.
They may be hosted on operating systems that are not multi-
processing or have a single address space, and thus
dedicating a single process requires dedicating a whole
processor. These systems may also not have disk storage or
other persistent storage.

. . .
Part

1
Part

n

. . .
Part

1
Part

n

. . .
Part

1
Part

n

Stage 1

Stage 2

Stage 3

Health and
Status

Monitoring

Figure 2: Functional View of Prototype Application

 The second advantage is to overcome the tight binding
between a service’s implementation and its underlying ORB
that is inherent in a monolithic implementation. In some
sense, the service implementation is only as “good” as the
ORB that hosts it. By building the service as a library, the
various optimizations and other compilation switches can be
varied consistent with those used to build the varieties of the
underlying ORB. Further, the service can be integrated with
features optionally provided by and configured into the
underlying ORB. These include replaceable and custom
transports, and the use of the RTCORBA features, such as
priority propagation and banded communication. For
example, it is entirely possible to embed an ORBexpress
Names: Embedded Objects capability into an application
that supports only shared memory and message queues, but
not TCP/IP, as the means of communications. It would be
impractical to build monolithic servers to cover all possible
combinations of transports and ORB features.

3. ADVANTAGES OF COMPONENT-BASED
DEVELOPMENT

Component-based development has been called “the third
stage of formality” [4] in software design. Components
package a number of objects along with supporting services,
often provided by a “framework”, into a cohesive
subsystem. Given sufficient reusable components and the
ability to customize them, the process of application
development becomes more a process of assembly, than a
process of coding.

 A third advantage is the performance improvements
that can be gained from “co-location optimizations”. Most
ORBs expedite the handling of requests to object
implementations with the same process by bypassing
marshalling and any communication on the network.
 These advantages lead Objective Interface Systems to
undertake the development of ORBexpress Names:
Embedded Objects, a fine-grained CORBA Name Service
and ORBexpress Events: Embedded Objects, a fine-grained
CORBA Event Service (see Table 1). After development,
several unobvious advantages were discovered. These
implementations of the CORBA services were useful in the
assembly of applications from objects in unexpected ways.
In many cases, these advantages yielded some of the
benefits attributed to component-based development.

 Purported technical benefits include better management
of complexity that allows better quality and separation of
complex infrastructure issues from the “business logic” and
looser coupling among components that allows independent
design and development and prevents the “rippling” effect
of requirements changes. These technical advantages should
result in easier, safer, and quicker development.
 For these reasons, component-based development is
drawing a lot of attention in the commercial development
sector, as well as being a basis for the Software
Communications Architecture (SCA) developed for the U.S.
Army’s Joint Tactical Radio System program, shaped by the
Software Defined Radio Forum, and being standardized by
the Object Management Group [5].

Table 1: Example Sizes of Fine-Grained CORBA Services

Total Library Obj Code Size (kB) Embedded Objects
Product VxWorks/PPC

(.out)
Solaris

2.8/Sparc (.a)
ORBexpress Names 80 127
ORBexpress Events 115 227

4. PROTOTYPE APPLICATION

 The functional view of one prototype application that has

been studied is illustrated in Figure 2. It is evocative of
radar processing or other signal processing applications that
must processing immense amounts of data in a pipeline

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

 In each of these diagrams, the thicker arrows indicate
CORBA method invocations, while thin arrows indicate the
use of events.

manner with each stage of the pipeline refining the results
from the previous stage. Further, it is assumed that the
processing at each stage may be processed in a data parallel
manner. Thus the functional block at each stage contains n
“part” processing blocks. Finally, it is assumed that the each
part and each stage reports its status to a Health and Status
Monitoring (H&S) subsystem.

 The rest of this paper will illustrate the use of the fine-
grained CORBA service implementations in the
implementations of these different architectures, and how
they allow the differences between these physical
architectures to be ignored until the application is actually
deployed on the target hardware.

Health and
Status

Monitoring

Stage 1

Stage 2

Stage 3

Health and
Status

Monitoring
(Host)

Part
1

Part
2

Board 3

Part
1

Part
2

Board 2

Part
1

Part
2

Board 1

5. USES OF FINE-GRAINED EVENT SERVICE

The CORBA Event Service has been used as an
infrastructure for functions similar to the Health and Status
Monitoring subsystem in many applications. The
asynchronous and distributed nature of status monitoring
and fault detection makes the Event Service an ideal
infrastructure for this. In both of the physical architectures,
the Event Service serves to collect health and status reports
from each of the three processing stages. In both of these
physical architectures, either a traditional, monolithic, or
fine-grained implementation would be sufficient for this
purpose.
 In the second physical architecture, the use of the fine-
grained Event Service in each board to collect events from
the parts processors allows this processing to be performed
without requiring a separate process on the board. Further, it
allows each stage to be treated as a component regardless of
whether the component is monolithic or implemented by a
sub-assembly. Thus, regardless of which of the physical
architectures are used; the Event Channel connected to the
H&S Monitor can be configured with three suppliers in
either case. Each “on-board channel” connects itself to the
off-board channel as a supplier. The following code snippet
illustrates this process:
CosEventChannelAdmin::ConsumerAdmin_var

 OnBoard_Consumer_Admin

 = OnBoard_Channel->for_consumers();

CosEventChannelAdmin::ProxyPushSupplier_var

 The_Proxy_Push_Supplier

 = The_Consumer_Admin->obtain_push_supplier();

CosEventChannelAdmin::SupplierAdmin_var

 The_Supplier_Admin
 Figure 3 Two Different Hardware Architecture

 The prototype application has been studied on two
different hardware architectures as illustrated in Figure 3.
The configuration in the top half of Figure 3 is simple; each
pipeline stage is processed on a dedicated processor. The
H&S subsystem is also run on a different host.

 = The_Event_Channel->for_suppliers();

CosEventChannelAdmin::ProxyPushConsumer_var

 The_Proxy_Push_Consumer

 = The_Supplier_Admin->obtain_push_consumer();

The_Proxy_Push_Supplier->connect_push_consumer
 The configuration in the lower half of Figure 3 shows
two part processing components sharing a board, such as a
CSPI multi-computer board, and sharing the processing load
for each stage of the pipeline. The H&S component remains
on a separate host.

 (The_Proxy_Push_Consumer.in());

The_Proxy_Push_Consumer->connect_push_supplier

 (The_Proxy_Push_Supplier.in());

 The fine-grained Event Service was also found to be of
use in implementing the “collective request” infrastructure

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

required by the Data Parallel CORBA specification [6]. This
specification allows a single parallel request to deliver
different data to parallel “parts” that process pieces of the
request in parallel. If these parallel parts make a request to
other parallel parts, this request is termed a collective
request. The infrastructure supporting collective requests
must synchronize the receipt of pieces of the parallel request
from each of the requesting parallel parts before it can allow
delivery of the data to the processing parallel parts. A fine-
grained event channel was found to be of use in
implementing this infrastructure. Each piece of the parallel
request is pushed into the event channel, and the consumers
attached to each part wait for all pieces of the request to
arrive before forwarding the request to the processing
pieces.

6. USE OF FINE-GRAINED NAMING SERVICE

The Naming Service was used in two different ways within
the studies application. The first was a more traditional use
of the Naming Services to find the known top-level

components of the application. For example, Figure 4 shows
the Naming Hierarchy for the example application running
on the first hardware architecture:

NCONTEXT |-/Application
NCONTEXT | |-/Stage1
NOBJECT | | |-/home
NCONTEXT | |-/Stage2
NOBJECT | | |-/home
NCONTEXT | |-/Stage3
NOBJECT | | |-/home
NCONTEXT | |-/H&S
NOBJECT | | |-/home
Figure 4: Naming Hierarchy Relecting Top-

Level Components

 This use of the Naming Service is straightforward and
application dependent. Servers register the objects that they
host under application-dependent, and probably hard coded,
names. Clients of these objects look them up by name.
 The second use of the Naming Service supports the
transparency of using sub-assemblies as components, and is
reflected in Figure 5:
 The Naming Service is used here in different way.
Instead of being used by the application directly, it is used
to inform elements of subassemblies where other elements
of the subassembly are. Part of this processing is again
hard-coded; for example, the “stage” subassemblies know
there is one board-specific event channel named
“BoardChannel”. But, there is also part of the process that
requires reflection. For example, the number of parts
processors can be varied at each stage. The configuration of
the CollectiveInvoke sub-components must know the
multiplicity and identity of the parts processors in the
following stage. This requires the CollectiveInvoke
component to discover the number and identity of the parts
processors in the following stage. Fortunately, the CORBA
Naming Service includes the ability to dynamically traverse
the naming graph. When combined with certain naming
conventions, the required process of discovery can be easily
accomplished.

7. ARCHITECTURAL GLUE
 NCONTEXT |-/Application

NCONTEXT | |-/Stage1
NOBJECT | | |-/home
NOBJECT | | |-/Part1
NOBJECT | | |-/Part2
NOBJECT | | |-/BoardChannel
NCONTEXT | | |-/CollectiveInvoke
NOBJECT | | | |-/home
NOBJECT | | | |-/RequestChannel
NOBJECT | | | |-/PushProxy1
NOBJECT | | | |-/PushProxy2
NCONTEXT | |-/Stage2
NOBJECT | | |-/home
NOBJECT | | |-/Part1
NOBJECT | | |-/Part2
NOBJECT | | |-/BoardChannel
NCONTEXT | | |-/CollectiveInvoke
NOBJECT | | | |-/home
NOBJECT | | | |-/RequestChannel
NOBJECT | | | |-/PushProxy1
NOBJECT | | | |-/PushProxy2
NCONTEXT | |-/Stage3
NOBJECT | | |-/home
NOBJECT | | |-/Part1
NOBJECT | | |-/Part2
NOBJECT | | |-/BoardChannel
NCONTEXT | |-/H&S
NOBJECT | | |-/home
Figure 5: Naming Hierarchy Relecting Sub-

assemblies

These explorations have revealed unexpected uses for fine-
grained implementations of these CORBA services. Once
these services are freed from monolithic implementations as
standalone servers, they can be used “architectural glue”;
they are very useful in assembling and tying together
systems from components. In the prototype application
discussed above, the fine-grained Event Service was used in
the following ways:

• “chained event channels” were used to collect
information from sub-components without the need
of the overall Health and Status Monitoring to be
aware of the details of assembly

• “local event channels” were used to provide data
transfer as part of implementing collective
innovations

 The fine-grained Naming Service was used to reflect:
• Application structure
• Application deployment
• Sub-component structure and implementation

 The use of a simple naming convention allowed the
built-in capabilities of the Naming Service to provide
reflection capabilities to the architecture to allow dynamic
query and discovery of components and sub-assemblies.

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

8. FUTURE DIRECTIONS

The novel uses of these services as architectural glue would
be furthered if several issues were addressed in the CORBA
standards.
 The first of these are “factory interfaces”. There is no
standard way to create a Naming Service NamingContext
object except from another NamingContext. There is also no
standard interface for creating EventChannels. These are
addressed in the ORBexpress Embedded Object Services
products as a proprietary extension.
 There is also a need for location controls on some of
the object instances that are created by services. For
example, there is a need to create the Event Service proxy
objects collocated with the consumers and suppliers that
will connect to them, especially if an implementation is to
use multicast communication between suppliers and
consumers.
 There are several CORBA standards in process that are
relevant to these explorations. The Lightweight CORBA
Component specification may provide a conceptual
framework in which the techniques explored here could be
considered in an implementation of rather than a competitor
to. The Deployment and Configuration specification was
recently adopted and contains a clean framework to specify
the configuration and deployment of CORBA-based
components.

REFERENCES

1 Soley, R. M. and C. M. Stone, Object Management
Architecture Guide, Revision 3.0, John Wiley and Sons,
New York
2 OMG, The Common Request Broker: Architecture and
Specification, OMG specification formal/02-06-01, Object
Management Group, Natick, MA
3 OMG, Naming Service Specification, Revised Edition,
February 2001, OMG specification formal/01-02-65,
Object Management Group, Natick,.MA
4 Component Group, “Component-Based Development – an
Overview”,
http://www.componentgroup.com/whitepapers/overview.html,
The Component Group, 2000
5 Software Communications Architecture Specification,
MSRC-5000SCA, V2.2, Modular Software-programmable
Radio Consortium, November 17, 2001, available at
http://jtrs.army.mil/pages/sections/technicalinformation/technical_
SCACurrent.html
6 OMG, Data Parallel CORBA, OMG specification ptc/03-
03-05, Object Management Group, Natick, MA

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

http://www.componentgroup.com/whitepapers/overview.html

